Search ASTM
A01 STEEL, STAINLESS STEEL AND RELATED ALLOYS A04 IRON CASTINGS A05 METALLIC-COATED IRON AND STEEL PRODUCTS B01 ELECTRICAL CONDUCTORS B05 COPPER AND COPPER ALLOYS B07 LIGHT METALS AND ALLOYS C01 CEMENT C04 VITRIFIED CLAY PIPE C07 LIME AND LIMESTONE C09 CONCRETE AND CONCRETE AGGREGATES C11 GYPSUM AND RELATED BUILDING MATERIALS AND SYSTEMS C12 MORTARS AND GROUTS FOR UNIT MASONRY C13 CONCRETE PIPE C14 GLASS AND GLASS PRODUCTS C15 MANUFACTURED MASONRY UNITS C16 THERMAL INSULATION C17 FIBER-REINFORCED CEMENT PRODUCTS C18 DIMENSION STONE C21 CERAMIC WHITEWARES AND RELATED PRODUCTS C24 BUILDING SEALS AND SEALANTS C27 PRECAST CONCRETE PRODUCTS D01 PAINT AND RELATED COATINGS, MATERIALS, AND APPLICATIONS D04 ROAD AND PAVING MATERIALS D07 WOOD D08 ROOFING AND WATERPROOFING D09 ELECTRICAL AND ELECTRONIC INSULATING MATERIALS D11 RUBBER D14 ADHESIVES D18 SOIL AND ROCK D20 PLASTICS D35 GEOSYNTHETICS E05 FIRE STANDARDS E06 PERFORMANCE OF BUILDINGS E33 BUILDING AND ENVIRONMENTAL ACOUSTICS E36 ACCREDITATION & CERTIFICATION E57 3D IMAGING SYSTEMS E60 SUSTAINABILITY F01 ELECTRONICS F06 RESILIENT FLOOR COVERINGS F13 PEDESTRIAN/WALKWAY SAFETY AND FOOTWEAR F16 FASTENERS F17 PLASTIC PIPING SYSTEMS F33 DETENTION AND CORRECTIONAL FACILITIES F36 TECHNOLOGY AND UNDERGROUND UTILITIES G03 WEATHERING AND DURABILITY C14 GLASS AND GLASS PRODUCTS C21 CERAMIC WHITEWARES AND RELATED PRODUCTS D01 PAINT AND RELATED COATINGS, MATERIALS, AND APPLICATIONS D06 D09 ELECTRICAL AND ELECTRONIC INSULATING MATERIALS D10 PACKAGING D11 RUBBER D12 SOAPS AND OTHER DETERGENTS D13 TEXTILES D14 ADHESIVES D15 ENGINE COOLANTS AND RELATED FLUIDS D20 PLASTICS D21 POLISHES D31 LEATHER E12 COLOR AND APPEARANCE E18 SENSORY EVALUATION E20 TEMPERATURE MEASUREMENT E35 PESTICIDES, ANTIMICROBIALS, AND ALTERNATIVE CONTROL AGENTS E41 LABORATORY APPARATUS E53 ASSET MANAGEMENT E57 3D IMAGING SYSTEMS F02 FLEXIBLE BARRIER PACKAGING F05 BUSINESS IMAGING PRODUCTS F06 RESILIENT FLOOR COVERINGS F08 SPORTS EQUIPMENT, PLAYING SURFACES, AND FACILITIES F09 TIRES F10 LIVESTOCK, MEAT, AND POULTRY EVALUATION SYSTEMS F11 VACUUM CLEANERS F13 PEDESTRIAN/WALKWAY SAFETY AND FOOTWEAR F14 FENCES F15 CONSUMER PRODUCTS F16 FASTENERS F24 AMUSEMENT RIDES AND DEVICES F26 FOOD SERVICE EQUIPMENT F27 SNOW SKIING F37 LIGHT SPORT AIRCRAFT F43 LANGUAGE SERVICES AND PRODUCTS F44 GENERAL AVIATION AIRCRAFT D21 POLISHES D26 HALOGENATED ORGANIC SOLVENTS AND FIRE EXTINGUISHING AGENTS D33 PROTECTIVE COATING AND LINING WORK FOR POWER GENERATION FACILITIES E05 FIRE STANDARDS E27 HAZARD POTENTIAL OF CHEMICALS E30 FORENSIC SCIENCES E34 OCCUPATIONAL HEALTH AND SAFETY E35 PESTICIDES, ANTIMICROBIALS, AND ALTERNATIVE CONTROL AGENTS E52 FORENSIC PSYCHOPHYSIOLOGY E54 HOMELAND SECURITY APPLICATIONS E58 FORENSIC ENGINEERING F06 RESILIENT FLOOR COVERINGS F08 SPORTS EQUIPMENT, PLAYING SURFACES, AND FACILITIES F10 LIVESTOCK, MEAT, AND POULTRY EVALUATION SYSTEMS F12 SECURITY SYSTEMS AND EQUIPMENT F13 PEDESTRIAN/WALKWAY SAFETY AND FOOTWEAR F15 CONSUMER PRODUCTS F18 ELECTRICAL PROTECTIVE EQUIPMENT FOR WORKERS F23 PERSONAL PROTECTIVE CLOTHING AND EQUIPMENT F26 FOOD SERVICE EQUIPMENT F32 SEARCH AND RESCUE F33 DETENTION AND CORRECTIONAL FACILITIES G04 COMPATIBILITY AND SENSITIVITY OF MATERIALS IN OXYGEN ENRICHED ATMOSPHERES A01 STEEL, STAINLESS STEEL AND RELATED ALLOYS C01 CEMENT C09 CONCRETE AND CONCRETE AGGREGATES D02 PETROLEUM PRODUCTS, LIQUID FUELS, AND LUBRICANTS D03 GASEOUS FUELS D04 ROAD AND PAVING MATERIALS D15 ENGINE COOLANTS AND RELATED FLUIDS D18 SOIL AND ROCK D24 CARBON BLACK D35 GEOSYNTHETICS E12 COLOR AND APPEARANCE E17 VEHICLE - PAVEMENT SYSTEMS E21 SPACE SIMULATION AND APPLICATIONS OF SPACE TECHNOLOGY E36 ACCREDITATION & CERTIFICATION E57 3D IMAGING SYSTEMS F03 GASKETS F07 AEROSPACE AND AIRCRAFT F09 TIRES F16 FASTENERS F25 SHIPS AND MARINE TECHNOLOGY F37 LIGHT SPORT AIRCRAFT F38 UNMANNED AIRCRAFT SYSTEMS F39 AIRCRAFT SYSTEMS F41 UNMANNED MARITIME VEHICLE SYSTEMS (UMVS) F44 GENERAL AVIATION AIRCRAFT F45 DRIVERLESS AUTOMATIC GUIDED INDUSTRIAL VEHICLES E11 QUALITY AND STATISTICS E36 ACCREDITATION & CERTIFICATION E43 SI PRACTICE E55 MANUFACTURE OF PHARMACEUTICAL PRODUCTS E56 NANOTECHNOLOGY F42 ADDITIVE MANUFACTURING TECHNOLOGIES
Bookmark and Share

Features

Features

Fashioning Standards for Textiles

Committee D13 on Textiles Celebrates a Century

Whether natural or synthetic in origin, for garments or goods, standards for textile performance, properties and purposes have been fabricated by ASTM International Committee D13 for 100 years.

In an industry that dates to prehistoric times, a century is scarcely a moment. But in the 100 years that ASTM International Committee D13 on Textiles has been in existence, it’s no exaggeration to state that its standards have, in some way, affected every human on earth who has been exposed to modern civilization.

“Textiles touch everybody, everyday, and in ways they can’t even imagine,” says Vince Diaz, president of Atlantic Thread & Supply in Baltimore, Md., and a former vice chairman of Committee D13. From the clothes on our backs, to the furnishings in our homes, to the components in our vehicles, to the high speed circuit boards in our cell phones, to myriad industrial applications, textiles are everywhere. And they are likely to remain essential far into the future.

Textiles 101

Textiles begin with plant- or animal-derived fibers, including cotton, flax, wool and silk, or synthetic fibers, such as nylon, rayon, polyester or acrylic. Fibers can be spun into yarns and then woven or knitted into fabric, or felted, combined with other materials and turned into nonwovens, braids or cords using other methods of production. Also included in the general category of textiles are the components, or subassemblies, used in their creation, such as thread, buttons, snaps, zippers, battings and linings. The result is a staggeringly broad range of materials, products, standards and test methods that are used by and affect everyone from fiber processors to manufacturers, buyers, wholesalers, retailers, consumers and even enforcement agencies ensuring that imported textile products meet the stipulations of international textile agreements.

Beginnings

ASTM Committee D13 originated in 1914. World War I was raging, cotton was the workhorse fiber of the United States, and cement bag consumers and rubber tire manufacturers were, respectively, seeking more reliable cloth for the bags and for tires whose skeletons were made from cotton fabric and then coated with rubber.

By 1916, Committee D13 on Standard Tests and Specifications for Textile Materials had developed its first three standards involving strip and grab testing to measure the tensile strength of cotton. Two years later, the committee expanded, establishing six subcommittees to consider humidity, specimens, imperfections, tolerances, testing machines and fiber identification, classification, nomenclature and specifications.

With the introduction of synthetic fibers in the 1930s and 1940s, textile capabilities and applications multiplied, requiring new standards and test methods. Skip ahead 96 years and today’s committee includes 614 members, who participate in 29 subcommittees that oversee 343 published standards and coordinate with 11 other ASTM committees whose scopes also include applications and end uses of textile products.

“Applications for textile materials have exploded,” says Adi Chehna, president, Textile Tech Services, Marlborough, Mass., and a past chairman of Committee D13. “I can’t even think of an application where textiles are not used.”

Developing Standards

It’s difficult to pinpoint just a few especially significant textile standards since there are so many. As the 68-page, 93-year-old standard D123, Terminology Relating to Textiles, confirms, textiles include many materials, and as Chehna explains, “Most textile companies only deal with a product at a particular stage in its production pipeline.”

Also, “in an industry as highly segmented as textiles, subcommittees may be developing standards for a part of the market that’s small, that may have only two to a dozen manufacturers,” says Kay Villa, a Wisconsin-based former chairman of Committee D13 and retired textile consultant. “But within each industry sector, our standards are used predominantly.”

One of the most frequently and widely used standards throughout the world is D1776, Practice for Conditioning and Testing Textiles, developed by Subcommittee D13.51 on Conditioning, Chemical and Thermal Properties. This standard addresses the sensitivity of textile fibers and fabrics to humidity; it applies when conditioning is specified in a test method.

In fact, most of the test methods developed by Committee D13 include precision statements based on statistical analyses that verify the consistency of data when multiple technicians and laboratories evaluate the same textile product in an interlaboratory study. “Marketplace confidence in Committee D13 standards is further validated by their citation in national and international standards,” explains Diaz. Today, two subcommittees, respectively, oversee general and specific test methods. Among those methods are D5034, Test Method for Breaking Force and Elongation of Textile Fabrics (Grab Method), and its namesake D5035, Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method), two of the committee’s earliest published standards.

Standing the Test of Time

Some D13 standards have gained significance because of their enduring relevance. For example, says Villa, “Subcommittees related to all the natural fibers — fibers that have been used for millennia, including cotton, wool and flax — have standards that have been used for a very long time.”

Other venerable fiber standards have been developed to ensure quality in composition, performance and construction. For example, Subcommittee D13.58 on Yarns and Fibers, which incorporates synthetic fibers, has developed standards for sewing thread, such as D1423, Test Method for Twist in Yarns by Direct Counting.

Standard D6193, Practice for Stitches and Seams, overseen by Subcommittee D13.54 on Subassemblies, originated with the U.S. Department of Defense and was among many federal textile standards transitioned to internationally recognized, private-sector standards development organizations.

Subcommittee D13.66 on Sewn Product Automation, which has developed standards for digitizing pattern cutting and other manufacturing specifications for computerized equipment, is emblematic of how the textile industry has always embraced technological advances in the industrial world, says Chehna. “Centuries ago, it was gears and pulleys. Now, it’s robots and CAD/CAM applications.”

Standards for Clothing and Household Items

Apparel and home furnishing products, including carpeting, remain a huge area of standards development and cover many different textile characteristics, including breaking and tear strength, stretch, dimensional change and colorfastness. Understandably, standards differ widely depending on the end product and its application. For example, a swimsuit incorporating a stretch fabric, like spandex, has to meet different performance specifications than a silk tie, bed linens or tablecloths. The same is true of subassemblies. A zipper on a firefighter’s protective gear will necessarily require different performance characteristics than a zipper on a briefcase or handbag.

“Contracts between suppliers and retailers have always been tied to performance specifications,” explains Norma Keyes, a textile consultant based in Apex, N.C. “Historically, they’ve been a key aspect of the textile industry and the development of commerce.”

Labeling also falls under the jurisdiction of Committee D13. D5489, Guide for Care Symbols for Care Instruction on Textile Products, affects just about anyone who does household laundry since it refers to those little icons on labels that indicate how we should wash, dry or otherwise care for our clothing, blankets, towels and other textiles.

High Performance and Glass Fibers

A number of Committee D13 subcommittees have published standards that address the ongoing development and application of high performance engineered fibers in a variety of products. Two subcommittees whose standards have directly impacted anyone who has ridden in an automobile are Subcommittee D13.19 on Industrial Fibers and Metallic Reinforcement and Subcommittee D13.20 on Inflatable Restraints. Those committees have developed standards affecting automobile tire cords, hoses, belts and air bags.

Although the fiberglass (generally, a plastic matrix reinforced by fine glass fibers) that Subcommittee D13.18 on Glass Fiber and its Products addresses might be used for structural support in fiber optic cables, they are not the type of fibers that carry optic signals, explains Steve Parks, subcommittee chair and product manager, specialty products, PPG Fiber Glass Products, PPG Industries, Inc., Lexington, N.C. “Instead, D13.18 standards concern glass fiber textiles with traditional applications, including wovens, braids, narrow tapes and coated yarns. These structures have properties that make them especially useful for high temperature applications, insulation barriers, filtration media, paper and tape reinforcements, construction materials, medical casting, aerospace and other uses.” Fiberglass products also touch our daily lives in applications ranging from window shades and insect screening to the high speed circuit boards used in our automobiles, cell phones and personal computers.

Sizing and Life Cycles

Two newer Committee D13 subcommittees could have a major influence on manufacturers and consumers. One, D13.55 on Body Measurement for Apparel Sizing, is developing standardized apparel sizing, a daunting task demanded by consumers, including the U.S. Department of Defense, who want assurance that whatever garment size they require, the fit will be consistent, despite the manufacturer, brand, retailer or type of clothing. The other subcommittee, D13.40 on Sustainability of Textiles, is still in its infancy and is currently working on a standard defining sustainability terms. But, notes Diaz, this subcommittee has the potential to grapple with the complete life cycle of textiles, from the resources they use during manufacturing to their eventual recycling or final end use.

Changing ASTM

Beyond impacting the textile industry, Committee D13 on Textiles has also had a substantial effect on ASTM International, spinning off several other committees, including D35 on Geosynthetics, and E11 on Quality and Statistics, and F23 on Personal Protective Clothing and Equipment. D13 also boasts a 30 percent non-U.S. membership, one of the highest among ASTM committees and a number attributed to textile manufacturing’s move overseas as well as the need to meet ASTM standards to comply with U.S. and other textile trade agreements.

Planning for Another Century

In addition to noting its longevity and international composition, Vicky Taylor, research technologist with INVISTA, Kingston, Ontario, Canada, who serves as the current chairman of the committee, emphasizes that the vast scope of Committee D13 helps distinguish and differentiate it from most other ASTM committees. “I’m proud of our members and the level of expertise they bring to the committee. They devote so much of their personal time to ASTM as volunteers and continue to provide mentoring assistance as we engage new members.” Keyes adds, “It’s a group that really enjoys what it does, a respectful, collegial group.”

And they’re already preparing for the next 100 years with the help of a subcommittee focused on long-range and succession planning.

“We’ve always been on the forefront of a lot of new and innovative things because we’ve been responsive to the marketplace,” says Villa. The committee has also become more proactive, says Taylor. “We’re exploring where the gaps are and seeking to identify opportunities where new standards and test methods are needed.”

What might those new standards and test methods address as evolving fiber technology begets new applications and products over the next few decades? Diaz imagines fibers gleaned from new sources, such as goat’s milk, and fabrics manufactured via 3-D printing. There may even be textile applications incorporating nanotechnology. Villa anticipates more smart textiles, especially apparel that can monitor an individual’s health or incorporate electronic gear. Keyes notes, “With products now being produced with scents, antiseptic and antibiotic healing properties, and even medical repair and replacement capability — such as artificial veins created from textiles — who knows what the next new thing will be.”

Adele Bassett is a freelance writer who has covered everything from youth gangs in Colorado to earthquakes in Connecticut while working for a variety of corporations and publications. She holds a B.A. in English, an M.S. in journalism and an M.B.A.

This article appears in the issue of Standardization News.