ASTM E798 - 96(2009)

    Standard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources

    Active Standard ASTM E798 | Developed by Subcommittee: E10.08

    Book of Standards Volume: 12.02


      Format Pages Price  
    PDF 13 $48.00   ADD TO CART
    Hardcopy (shipping and handling) 13 $48.00   ADD TO CART


    Abstract

    This practice covers procedures for irradiations at accelerator-based neutron sources. The discussion focuses on nearly monoenergetic 14-MeV neutrons from the deuterium-tritium T(d,n) interaction, and broad spectrum neutrons from stopping deuterium beams in thick beryllium or lithium targets. However, most of the recommendations also apply to other types of accelerator-based sources, including spallation neutron sources. The procedures to be considered include methods for characterizing the accelerator beam and target, the irradiated sample, and the neutron flux and spectrum, as well as procedures for recording and reporting irradiation data.

    This abstract is a brief summary of the referenced standard. It is informational only and not an official part of the standard; the full text of the standard itself must be referred to for its use and application. ASTM does not give any warranty express or implied or make any representation that the contents of this abstract are accurate, complete or up to date.

    1. Scope

    1.1 This practice covers procedures for irradiations at accelerator-based neutron sources. The discussion focuses on two types of sources, namely nearly monoenergetic 14-MeV neutrons from the deuterium-tritium T(d,n) interaction, and broad spectrum neutrons from stopping deuterium beams in thick beryllium or lithium targets. However, most of the recommendations also apply to other types of accelerator-based sources, including spallation neutron sources (1). Interest in spallation sources has increased recently due to their proposed use for transmutation of fission reactor waste (2).

    1.2 Many of the experiments conducted using such neutron sources are intended to simulate irradiation in another neutron spectrum, for example, that from a DT fusion reaction. The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. In general, the intent of these simulations is to establish the fundamental relationships between irradiation or material parameters and the material response. The extrapolation of data from such experiments requires that the differences in neutron spectra be considered.

    1.3 The procedures to be considered include methods for characterizing the accelerator beam and target, the irradiated sample, and the neutron flux and spectrum, as well as procedures for recording and reporting irradiation data.

    1.4 Other experimental problems, such as temperature control, are not included.

    1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

    1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    C859 Terminology Relating to Nuclear Materials

    E170 Terminology Relating to Radiation Measurements and Dosimetry

    E181 Test Methods for Detector Calibration and Analysis of Radionuclides

    E261 Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques

    E263 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron

    E264 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel

    E265 Test Method for Measuring Reaction Rates and Fast-Neutron Fluences by Radioactivation of Sulfur-32

    E266 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum

    E393 Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters

    E854 Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance, E706(IIIB)

    E910 Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance, E706 (IIIC)


    ICS Code

    ICS Number Code 27.120.10 (Reactor engineering)

    UNSPSC Code

    UNSPSC Code 26142004(Neutron irradiators); 26142108(Nuclear reactor in core neutron flux instrumentation)


    DOI: 10.1520/E0798-96R09

    ASTM International is a member of CrossRef.

    ASTM E798

    Citing ASTM Standards
    Back to Top