ASTM E720 - 11

    Standard Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics

    Active Standard ASTM E720 | Developed by Subcommittee: E10.07

    Book of Standards Volume: 12.02

      Format Pages Price  
    PDF Version 12 $48.00   ADD TO CART
    Print Version 12 $48.00   ADD TO CART
    Standard + Redline PDF Bundle 24 $57.60   ADD TO CART

    Significance and Use

    Because of the wide variety of materials being used in neutron-activation measurements, this guide is presented with the objective of bringing improved uniformity to the specific field of interest here: hardness testing of electronics primarily in critical assembly reactor environments.

    Note 2—Some of the techniques discussed are useful for 14-MeV dosimetry. See Test Method E496 for activation detector materials suitable for 14-MeV neutron effects testing.

    Note 3—The materials recommended in this guide are suitable for 252Cf or other weak source effects testing provided the fluence is sufficient to generate countable activities.

    This guide is organized into two overlapping subjects; the criteria used for sensor selection, and the procedures used to ensure the proper determination of activities for determination of neutron spectra. See Terminology E170 and General Methods E181. Determination of neutron spectra with activation sensor data is discussed in Guides E721 and E944.

    1. Scope

    1.1 This guide covers the selection and use of neutron-activation detector materials to be employed in neutron spectra adjustment techniques used for radiation-hardness testing of electronic semiconductor devices. Sensors are described that have been used at many radiation hardness-testing facilities, and comments are offered in table footnotes concerning the appropriateness of each reaction as judged by its cross-section accuracy, ease of use as a sensor, and by past successful application. This guide also discusses the fluence-uniformity, neutron self-shielding, and fluence-depression corrections that need to be considered in choosing the sensor thickness, the sensor covers, and the sensor locations. These considerations are relevant for the determination of neutron spectra from assemblies such as TRIGA- and Godiva-type reactors and from Californium irradiators. This guide may also be applicable to other broad energy distribution sources up to 20 MeV.

    Note 1—For definitions on terminology used in this guide, see Terminology E170.

    1.2 This guide also covers the measurement of the gamma-ray or beta-ray emission rates from the activation foils and other sensors as well as the calculation of the absolute specific activities of these foils. The principal measurement technique is high-resolution gamma-ray spectrometry. The activities are used in the determination of the energy-fluence spectrum of the neutron source. See Guide E721.

    1.3 Details of measurement and analysis are covered as follows:

    1.3.1 Corrections involved in measuring the sensor activities include those for finite sensor size and thickness in the calibration of the gamma-ray detector, for pulse-height analyzer deadtime and pulse-pileup losses, and for background radioactivity.

    1.3.2 The primary method for detector calibration that uses secondary standard gamma-ray emitting sources is considered in this guide and in General Methods E181. In addition, an alternative method in which the sensors are activated in the known spectrum of a benchmark neutron field is discussed in Guide E1018.

    1.3.3 A data analysis method is presented which accounts for the following: detector efficiency; background subtraction; irradiation, waiting, and counting times; fission yields and gamma-ray branching ratios; and self-absorption of gamma rays and neutrons in the sensors.

    1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

    1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    E170 Terminology Relating to Radiation Measurements and Dosimetry

    E181 Test Methods for Detector Calibration and Analysis of Radionuclides

    E261 Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques

    E262 Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

    E263 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron

    E264 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel

    E265 Test Method for Measuring Reaction Rates and Fast-Neutron Fluences by Radioactivation of Sulfur-32

    E266 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum

    E393 Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters

    E496 Test Method for Measuring Neutron Fluence and Average Energy from 3H(d,n) 4He Neutron Generators by Radioactivation Techniques

    E704 Test Method for Measuring Reaction Rates by Radioactivation of Uranium-238

    E705 Test Method for Measuring Reaction Rates by Radioactivation of Neptunium-237

    E721 Guide for Determining Neutron Energy Spectra from Neutron Sensors for Radiation-Hardness Testing of Electronics

    E844 Guide for Sensor Set Design and Irradiation for Reactor Surveillance, E 706 (IIC)

    E944 Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA)

    E1018 Guide for Application of ASTM Evaluated Cross Section Data File, Matrix E706 (IIB)

    E1297 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium

    ICS Code

    ICS Number Code 83.140.10 (Films and sheets)

    UNSPSC Code

    UNSPSC Code

    DOI: 10.1520/E0720-11

    ASTM International is a member of CrossRef.

    ASTM E720

    Citing ASTM Standards
    Back to Top