ASTM E1820 - 13

    Standard Test Method for Measurement of Fracture Toughness

    Active Standard ASTM E1820 | Developed by Subcommittee: E08.07

    Book of Standards Volume: 03.01


      Format Pages Price  
    PDF 54 $67.00   ADD TO CART
    Hardcopy (shipping and handling) 54 $67.00   ADD TO CART
    Standard + Redline PDF Bundle 108 $80.40   ADD TO CART


    Significance and Use

    5.1 Assuming the presence of a preexisting, sharp, fatigue crack, the material fracture toughness values identified by this test method characterize its resistance to: (1) fracture of a stationary crack, (2) fracture after some stable tearing, (3) stable tearing onset, and (4) sustained stable tearing. This test method is particularly useful when the material response cannot be anticipated before the test. Application of procedures in Test Method E1921 is recommended for testing ferritic steels that undergo cleavage fracture in the ductile-to-brittle transition.

    5.1.1 These fracture toughness values may serve as a basis for material comparison, selection, and quality assurance. Fracture toughness can be used to rank materials within a similar yield strength range.

    5.1.2 These fracture toughness values may serve as a basis for structural flaw tolerance assessment. Awareness of differences that may exist between laboratory test and field conditions is required to make proper flaw tolerance assessment.

    5.2 The following cautionary statements are based on some observations.

    5.2.1 Particular care must be exercised in applying to structural flaw tolerance assessment the fracture toughness value associated with fracture after some stable tearing has occurred. This response is characteristic of ferritic steel in the transition regime. This response is especially sensitive to material inhomogeneity and to constraint variations that may be induced by planar geometry, thickness differences, mode of loading, and structural details.

    5.2.2 The J-R curve from bend-type specimens recommended by this test method (SE(B), C(T), and DC(T)) has been observed to be conservative with respect to results from tensile loading configurations.

    5.2.3 The values of δc, δu, Jc, and J u may be affected by specimen dimensions.

    1. Scope

    1.1 This test method covers procedures and guidelines for the determination of fracture toughness of metallic materials using the following parameters: K, J, and CTOD (δ). Toughness can be measured in the R-curve format or as a point value. The fracture toughness determined in accordance with this test method is for the opening mode (Mode I) of loading.

    Note 1Until this version, KIc could be evaluated using this test method as well as by using Test Method E399. To avoid duplication, the evaluation of KIc has been removed from this test method and the user is referred to Test Method E399.

    1.2 The recommended specimens are single-edge bend, [SE(B)], compact, [C(T)], and disk-shaped compact, [DC(T)]. All specimens contain notches that are sharpened with fatigue cracks.

    1.2.1 Specimen dimensional (size) requirements vary according to the fracture toughness analysis applied. The guidelines are established through consideration of material toughness, material flow strength, and the individual qualification requirements of the toughness value per values sought.

    1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

    1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    Note 2Other standard methods for the determination of fracture toughness using the parameters K, J, and CTOD are contained in Test Methods E399, E1290, and E1921. This test method was developed to provide a common method for determining all applicable toughness parameters from a single test.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    E4 Practices for Force Verification of Testing Machines

    E8/E8M Test Methods for Tension Testing of Metallic Materials

    E21 Test Methods for Elevated Temperature Tension Tests of Metallic Materials

    E23 Test Methods for Notched Bar Impact Testing of Metallic Materials

    E399 Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials

    E1290 Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement

    E1823 Terminology Relating to Fatigue and Fracture Testing

    E1921 Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range

    E1942 Guide for Evaluating Data Acquisition Systems Used in Cyclic Fatigue and Fracture Mechanics Testing

    E2298 Test Method for Instrumented Impact Testing of Metallic Materials


    ICS Code

    ICS Number Code 77.040.10 (Mechanical testing of metals)

    UNSPSC Code

    UNSPSC Code 49211814(Fatigue measurement instrument)


    DOI: 10.1520/E1820

    ASTM International is a member of CrossRef.

    ASTM E1820

    Citing ASTM Standards
    Back to Top