Standard Active Last Updated: Sep 11, 2018 Track Document
ASTM D7858-13(2018)

Standard Test Method for Determination of Bisphenol A in Soil, Sludge, and Biosolids by Pressurized Fluid Extraction and Analyzed by Liquid Chromatography/Tandem Mass Spectrometry

Standard Test Method for Determination of Bisphenol A in Soil, Sludge, and Biosolids by Pressurized Fluid Extraction and Analyzed by Liquid Chromatography/Tandem Mass Spectrometry D7858-13R18 ASTM|D7858-13R18|en-US Standard Test Method for Determination of Bisphenol A in Soil, Sludge, and Biosolids by Pressurized Fluid Extraction and Analyzed by Liquid Chromatography/Tandem Mass Spectrometry Standard new BOS Vol. 11.04 Committee D34
$ 69.00 In stock

Significance and Use

5.1 This is a performance-based method, and modifications are allowed to improve performance.

5.1.1 Due to the rapid development of newer instrumentation and column chemistries, changes to the analysis described in this test method are allowed as long as better or equivalent performance data result. Any modifications shall be documented and performance data generated. The user of the data generated by this test method shall be made aware of these changes and given the performance data demonstrating better or equivalent performance.

5.2 The first reported synthesis of BPA was by the reaction of phenol with acetone by Zincke.7 BPA has become an important high-volume industrial chemical used in the manufacture of polycarbonate plastic and epoxy resins. Polycarbonate plastic and resins are used in numerous products, including electrical and electronic equipment, automobiles, sports and safety equipment, reusable food and drink containers, electrical laminates for printed circuit boards, composites, paints, adhesives, dental sealants, protective coatings, and many other products.8

5.3 The environmental source of BPA is predominantly from the decomposition of polycarbonate plastics and resins. BPA is not classified as bio-accumulative by the U.S. Environmental Protection Agency and will biodegrade. BPA has been reported to have adverse effects in aquatic organisms and may be released into environmental waters directly at trace levels through landfill leachate and sewage treatment plant effluents. This method has been investigated for use with soil, sludge, and biosolids.

5.4 The land application of biosolids has raised concerns over the fate of BPA in the environment, and a standard method is needed to monitor concentrations. This method has been investigated for use with various soils.

Scope

1.1 This procedure covers the determination of Bisphenol A (BPA) in soil, sludge, and biosolids. This test method is based upon solvent extraction of a soil matrix by pressurized fluid extraction (PFE). The extract is filtered and analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS). BPA is qualitatively and quantitatively determined by this test method.

1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.3 The method detection limit (MDL),2 electrospray ionization (ESI) mode, and reporting range3 for BPA are listed in Table 1.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Price:
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Book of Standards Volume: 11.04
Developed by Subcommittee: D34.01.06
Pages: 11
DOI: 10.1520/D7858-13R18
ICS Code: 13.080.10