ASTM D7110 - 05a(2011)

    Standard Test Method for Determining the Viscosity-Temperature Relationship of Used and Soot-Containing Engine Oils at Low Temperatures

    Active Standard ASTM D7110 | Developed by Subcommittee: D02.07

    Book of Standards Volume: 05.04


      Format Pages Price  
    PDF Version 7 $42.00   ADD TO CART
    Print Version 7 $42.00   ADD TO CART


    Significance and Use

    Significance of Low Temperature, Low Shear Rate, Engine Oil RheologyThe low-temperature, low-shear viscometric behavior of an engine oil, whether new, used, or sooted, determines whether the oil will flow to the sump inlet screen, then to the oil pump, then to the sites in the engine requiring lubrication in sufficient quantity to prevent engine damage immediately or ultimately after cold temperature starting. Two forms of flow problems have been identified, flow-limited and air-binding behavior. The first form of flow restriction, flow-limited behavior, is associated with the oil's viscosity; the second, air-binding behavior, is associated with gelation.

    Significance of the Test MethodThe temperature-scanning technique employed by this test method was designed to determine the susceptibility of the engine oil to flow-limited and air-binding response to slow cooling conditions by providing continuous information on the rheological condition of the oil over the temperature range of use. , , In this way, both viscometric and gelation response are obtained in one test.

    Note 1—This test method is one of three related to pumpability related problems. Measurement of low-temperature viscosity by the two other pumpability test methods, D3829 and D4684, hold the sample in a quiescent state and generate the apparent viscosity of the sample at shear rates ranging up to 15 s-1 and shear stresses up to 525 Pa at a previously selected temperature. Such difference in test parameters (shear rate, shear stress, sample motion, temperature scanning, and so forth) can lead to differences in the measured apparent viscosity among these methods with some test oils, particularly when other rheological factors associated with gelation are present. In addition, the three methods differ considerably in cooling rates.

    Gelation Index and Gelation Index TemperatureThis test method has been further developed to yield parameters called the Gelation Index and Gelation Index Temperature. The first parameter is a measure of the maximum rate of torque increase caused by the rheological response of the oil as the oil is cooled slowly. The second parameter is the temperature at which the Gelation Index occurs.

    1. Scope

    1.1 This test method covers how to measure the apparent viscosity of used and soot-containing engine oils at low temperatures.

    1.2 A shear rate of approximately 0.2 s-1 is produced at shear stresses below 200 Pa. Apparent viscosity is measured continuously as the sample is cooled at a rate of 3°C per hour over the range of 5 to 40°C.

    1.3 The measurements resulting from this test method are viscosity, the maximum rate of viscosity increase (Gelation Index) and the temperature at which the Gelation Index occurs.

    1.4 Applicability to petroleum products other than engine oils has not been determined in preparing this test method.

    1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

    1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D341 Practice for Viscosity-Temperature Charts for Liquid Petroleum Products

    D3829 Test Method for Predicting the Borderline Pumping Temperature of Engine Oil

    D4057 Practice for Manual Sampling of Petroleum and Petroleum Products

    D4684 Test Method for Determination of Yield Stress and Apparent Viscosity of Engine Oils at Low Temperature


    ICS Code

    ICS Number Code 75.100 (Lubricants, industrial oils and related products)

    UNSPSC Code

    UNSPSC Code 15121501(Engine oil)


    DOI: 10.1520/D7110-05AR11

    ASTM International is a member of CrossRef.

    ASTM D7110

    Citing ASTM Standards
    Back to Top