ASTM D6060 - 96(2009)

    Standard Practice for Sampling of Process Vents With a Portable Gas Chromatograph

    Active Standard ASTM D6060 | Developed by Subcommittee: D22.03

    Book of Standards Volume: 11.07


      Format Pages Price  
    PDF 6 $43.00   ADD TO CART
    Hardcopy (shipping and handling) 6 $43.00   ADD TO CART


    Significance and Use

    This practice has been widely used to obtain mass balance data for process scrubbers, to determine the efficiency of VOC emission control equipment, and to obtain data to support air permit applications.

    This practice will have applications to the MACT Rule and may have applications to Compliance Assurance Monitoring verification required by the 1990 Clean Air Act Title III Amendments.

    This practice, when used with Test Methods D3464 or D3154 or on-line process flow meter data, can be used to calculate detailed emission rate profiles for VOCs from process vents.

    This practice provides nearly real time results that can detect process changes or upsets that may be missed using conventional sorbent tube or integrated gas sampling bag sampling.

    1. Scope

    1.1 This practice describes a method for direct sampling and analysis of process vents for volatile organic compound (VOC) vapors and permanent gases using a portable gas chromatograph (GC).

    1.2 This practice is applicable to analysis of permanent gases such as oxygen (O2), carbon dioxide (CO2) and nitrogen (N2), as well as vapors from organic compounds with boiling points up to 125°C.

    1.3 The detection limits obtained will depend on the portable gas chromatograph and detector used. Detectors available include thermal conductivity, photoionization, argon ionization, and electron capture. For instruments equipped with thermal conductivity detectors, typical detection limits are one to two parts per million by volume (ppm(v)) with an applicable concentration range to high percent by volume levels. For instruments with photoionization detectors detection limit of one to ten parts per billion by volume (ppb(v)) are obtainable with a concentration range from 1000 to 2000 ppm(v). The argon ionization detector has an achievable detection limit of one (ppb(v)), while the electron capture detector has an achievable detection limit of one part per trillion by volume (ppt(v)) for chlorinated compounds.

    1.4 The applicability of this practice should be evaluated for each VOC by determining stability, reproducibility, and linearity.

    1.5 The appropriate concentration range must also be determined for each VOC, as the range will depend on the vapor pressure of the particular VOC.

    1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Refer to Section 8 on Hazards for additional safety precautions.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D1356 Terminology Relating to Sampling and Analysis of Atmospheres

    D3154 Test Method for Average Velocity in a Duct (Pitot Tube Method)

    D3464 Test Method for Average Velocity in a Duct Using a Thermal Anemometer

    E355 Practice for Gas Chromatography Terms and Relationships

    Other Document

    NFPA496 Standard for Purged and Pressurized Enclosures for Electrical Equipment Available from National Fire Protection Association (NFPA), 1 Batterymarch Park, Quincy, MA 02169-7471, http://www.nfpa.org.


    ICS Code

    ICS Number Code 71.040.50 (Physicochemical methods of analysis)

    UNSPSC Code

    UNSPSC Code 77121500(Air pollution)


    DOI: 10.1520/D6060-96R09

    ASTM International is a member of CrossRef.

    ASTM D6060

    Citing ASTM Standards
    Back to Top