ASTM D5592 - 94(2010)

    Standard Guide for Material Properties Needed in Engineering Design Using Plastics

    Active Standard ASTM D5592 | Developed by Subcommittee: D20.10

    Book of Standards Volume: 08.03


      Format Pages Price  
    PDF 6 $43.00   ADD TO CART
    Hardcopy (shipping and handling) 6 $43.00   ADD TO CART


    Significance and Use

    This guide is intended to serve as a reference to the plastics community for material properties needed in engineering design.

    Product datasheets or product literature typically report single-point values at ambient conditions and hence, by their very nature, are inadequate for engineering design and structural analysis of a component or system. A detailed property profile for the particular grade chosen for a given part not only enhances the confidence of the design engineer by allowing a more realistic assessment of the material under close-to-actual service environments but also may avoid premature failure of the designed component and potential liability litigation later. Additionally, it would also eliminate use of larger design safety factors that result in overengineering or overdesign. Not only is such overdesign unwarranted, but it adds to the total part cost, resulting in a good example of ineffective design with plastics and a prime target for substitution by other materials.

    One of the problems faced by design engineers is access to comparable data among similar products from different material suppliers because of the lack of standardized reporting format in the plastics industry. ISO 10350.1, ISO 11403-1, and ISO 11403-2 are intended to address the comparability of data issue only as far as single-point and multipoint data for material selection. This guide attempts to serve as a means to standardize the format to report comparable data for engineering design. It is essential that incorporating standardized test specimen geometry and specific test conditions as recommended in Guide D1999, Practice D3641, or ISO 3167 and ISO 294-1 are an integral part of the data generation.

    1. Scope

    1.1 This guide covers the essential material properties needed for designing with plastics. Its purpose is to raise the awareness of the plastics community regarding the specific considerations involved in using the appropriate material properties in design calculations.

    1.2 This guide is intended only as a convenient resource for engineering design. It should be noted that the specific operating conditions (temperature, applied stress or strain, environment, etc. and corresponding duration of such exposures) could vary significantly from one application to another. It is, therefore, the responsibility of the user to perform any pertinent tests under actual conditions of use to determine the suitability of the material in the intended application.

    1.3 The applicable ISO and ASTM standard methods for the relevant material properties are listed in this guide for the benefit of design engineers.

    1.4 It should be noted that for some of the desired properties, no ASTM or ISO standards exist. These include pvT data, no-flow temperature, ejection temperature, and fatigue in tension. In these instances, relying on available test methods is suggested.

    1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

    1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    Note 1—There is no similar or equivalent ISO standard.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D543 Practices for Evaluating the Resistance of Plastics to Chemical Reagents

    D638 Test Method for Tensile Properties of Plastics

    D695 Test Method for Compressive Properties of Rigid Plastics

    D883 Terminology Relating to Plastics

    D1435 Practice for Outdoor Weathering of Plastics

    D1894 Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting

    D1999 Guide for Selection of Specimens and Test Parameters from ISO/IEC Standards

    D2565 Practice for Xenon-Arc Exposure of Plastics Intended for Outdoor Applications

    D2990 Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics

    D2991 Test Method for Stress-Relaxation of Plastics

    D3045 Practice for Heat Aging of Plastics Without Load

    D3123 Test Method for Spiral Flow of Low-Pressure Thermosetting Molding Compounds

    D3418 Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry

    D3641 Practice for Injection Molding Test Specimens of Thermoplastic Molding and Extrusion Materials

    D3835 Test Method for Determination of Properties of Polymeric Materials by Means of a Capillary Rheometer

    D4473 Test Method for Plastics: Dynamic Mechanical Properties: Cure Behavior

    D5045 Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials

    D5279 Test Method for Plastics: Dynamic Mechanical Properties: In Torsion

    E6 Terminology Relating to Methods of Mechanical Testing

    E228 Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer

    E1823 Terminology Relating to Fatigue and Fracture Testing


    ICS Code

    ICS Number Code 21.020 (Characteristics and design of machines, apparatus, equipment); 83.080.01 (Plastics in general)

    UNSPSC Code

    UNSPSC Code 13100000(Rubber and elastomers)


    Referencing This Standard

    DOI: 10.1520/D5592-94R10

    ASTM International is a member of CrossRef.

    Citation Format

    ASTM D5592-94(2010), Standard Guide for Material Properties Needed in Engineering Design Using Plastics, ASTM International, West Conshohocken, PA, 2010, www.astm.org

    Back to Top