You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    ASTM D5391 - 14

    Standard Test Method for Electrical Conductivity and Resistivity of a Flowing High Purity Water Sample

    Active Standard ASTM D5391 | Developed by Subcommittee: D19.03

    Book of Standards Volume: 11.01


      Format Pages Price  
    PDF 8 $43.00   ADD TO CART
    Hardcopy (shipping and handling) 8 $43.00   ADD TO CART
    Standard + Redline PDF Bundle 16 $51.60   ADD TO CART


    Significance and Use

    5.1 Conductivity measurements are typically made on samples of moderate to high ionic strength where contamination of open samples in routine laboratory handling is negligible. Under those conditions, standard temperature compensation using coefficients of 1 to 3 % of reading per degree Celsius over wide concentration ranges is appropriate. In contrast, this test method requires special considerations to reduce trace contamination and accommodates the high and variable temperature coefficients of pure water samples that can range as high as 7 % of reading per degree Celsius. In addition, measuring instrument design performance must be proven under high purity conditions.

    5.2 This test method is applicable for detecting trace amounts of ionic contaminants in water. It is the primary means of monitoring the performance of demineralization and other high purity water treatment operations. It is also used to detect ionic contamination in boiler waters, microelectronics rinse waters, pharmaceutical process waters, etc., as well as to monitor and control the level of boiler and power plant cycle chemistry treatment chemicals. This test method supplements the basic measurement requirements for Test Methods D1125, D2186, and D4519.

    5.3 At very low levels of alkaline contamination, for example, 0–1 μg/L NaOH, conductivity is suppressed, and can actually be slightly below the theoretical value for pure water. (1 and 2)4 Alkaline materials suppress the highly conductive hydrogen ion concentration while replacing it with less conductive sodium and hydroxide ions. This phenomenon is not an interference with conductivity or resistivity measurement itself but could give misleading indications of inferred water purity in this range if it is not recognized.

    1. Scope

    1.1 This test method covers the determination of electrical conductivity and resistivity of high purity water samples below 10 μS/cm (above 0.1 Mohm-cm). It is applicable to both continuous and periodic measurements but in all cases, the water must be flowing in order to provide representative sampling. Static grab sampling cannot be used for such high purity water. Continuous measurements are made directly in pure water process lines, or in side stream sample lines to enable measurements on high temperature or high pressure samples, or both.

    1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

    1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


    ICS Code

    ICS Number Code 13.060.60 (Examination of water for physical properties)

    UNSPSC Code

    UNSPSC Code


    Referencing This Standard

    DOI: 10.1520/D5391

    ASTM International is a member of CrossRef.

    Citation Format

    ASTM D5391-14, Standard Test Method for Electrical Conductivity and Resistivity of a Flowing High Purity Water Sample, ASTM International, West Conshohocken, PA, 2014, www.astm.org

    Back to Top