ASTM D5314 - 92(2006)

    Standard Guide for Soil Gas Monitoring in the Vadose Zone

    Active Standard ASTM D5314 | Developed by Subcommittee: D18.21

    Book of Standards Volume: 04.08


      Format Pages Price  
    PDF 36 $62.00   ADD TO CART
    Hardcopy (shipping and handling) 36 $62.00   ADD TO CART
    Standard + Redline PDF Bundle 72 $74.40   ADD TO CART


    Significance and Use

    Application of Soil Gas MonitoringSoil gas monitoring is an extremely versatile method in that it can be adapted to conform to the requirements of dissimilar industries for a wide variety of applications. A number of soil gas techniques have been utilized in the agricultural (21), petroleum (22, 23) and minerals (24) industries. Certain applications have been exercised for well over 50 years. Soil gas monitoring has been utilized in research efforts, including the monitoring of underground coal gasification retorts (25). Application to the environmental industry is comparably recent but very effective as a rapid and relatively inexpensive method of detecting volatile contaminants in the vadose zone. Field screening, of which soil gas monitoring is a basic component, has been demonstrated to be effective for selection of suitable and representative samples for other more costly and definitive monitoring methods (26). Soil gas monitoring is useful to assess the extent of groundwater contamination for certain contaminants and field environments (27). Soil gas monitoring is also a viable method of monitoring subsurface contaminant discharges from underground storage tanks (28). New applications of the soil gas monitoring are periodically developed and published in the referenced literature. The method may be useful in the study of unsaturated flow. In most instances, the method can make use of very light-weight, portable and inexpensive tools made from commonly available materials. Soil gas monitoring has become a widely accepted method for locating subsequent environmental monitoring and remediation activities such as groundwater monitoring wells, contaminant product recovery wells or excavations to recover contaminated soil. Soil gas monitoring has made a significant contribution to groundwater monitoring and remedial planning on sites that fall under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) (29). This method is highly useful at the initiation of Phase II environmental assessment action in determining the presence of volatile organic contamination of real property in a pending sale.

    In any application, soil gas monitoring can be performed over a wide range of both spatial and temporal designs. Spatial designs include soil gas sampling in profiles or grid patterns at a single depth or multiple depths. Multiple depth sampling is particularly useful for contaminant determinations in cases with complex soil type distribution and multiple sources. Depth profiling can also be useful in the determination of the most appropriate depth(s) at which to monitor soil gas, as well as the demonstration of migration and degradation processes in the vadose zone. Temporal designs include the long-term monitoring of the vadose zone for the appearance of volatile organic contaminants from known potential sources such as underground storage tanks and solid waste landfills. Temporal designs are especially useful in monitoring the effectiveness of contaminant remediation efforts.

    Soil gas monitoring in the vadose zone is an ideal reconnaissance tool and screening technique in most applications. However, site specific and contaminant specific limitations can cause this technique to be unsuccessful in meeting project objectives. Caveats exist in all soil gas monitoring procedures that can frustrate efforts to successfully apply the method to any application.

    LimitationsThe most significant limitation on soil gas monitoring is the inability to utilize the method as a stand alone technique. Soil gas monitoring does not provide repeatable quantitative information over time due primarily to the dynamic nature of phase equilibria in the vadose zone and secondarily to unavoidable inconsistencies in sampling practice. As a result of geologic variability in the vadose zone and the multitude of unique sampling devices currently being used in the field, quality assurance and quality control protocol, discussed in 6.4, cannot provide the rigor required as in a test method. For these reasons, soil gas data in itself cannot be used to provide definitive answers about the location or absence of buried contaminants. Moreover, the success of any soil gas monitoring method is strongly dependent upon effects related to geologic variation and moisture content in the sampling horizon as well as the physical properties of the target contaminants.

    False negative results can occur as a direct result of the incompatibility of a specific procedure with the properties of the sampling horizon or the target contaminants, or both. Soil gas data cannot be used to establish bulk volume or the commerciality of buried petroleum, natural gas, or ore bodies.

    With the necessary analytical procedures, soil gas can be examined for compositional anomalies, a very useful technique for multiple source problems. In some instances, contaminant occurrences are limited to single species (compounds, mercury, etc.), however more often than not the contaminant source is a mixture of organic chemicals that have a unique chemical compositional character consisting of both normally evaluated priority pollutants and nonpriority pollutant chemicals that may be overlooked. By identifying and using compositional information, many problematic site situations such as degradation can be minimized by targeting the more refractory compounds associated with the contaminant occurrence. This interpretive method is impossible to model for an industry wide application due to variation in methods and technique.

    A basic limitation of the technique is that due to the ease of procurement and use of soil gas sampling devices, there is a tendency for inexperienced personnel to oversimplify any and all aspects of the method. Investigators must consider the experience level and technical ability of personnel who acquire soil gas samples and attempt to interpret the results. Certain procedural facets are not trivial, as discussed in Section 6. The results of certain techniques tend to be affected by minor variations in procedure despite apparent adherence to a Standard Operating Procedure.

    Atmospheric air contamination is not a trivial problem corrected by simple device-oriented field practice. Many sampling systems recover very large volumes of soil gas that may actually represent a mixture of soil gas and atmospheric air. This mixing occurs through the introduction of ambient air adjacent to the sampling device and through macroporous pathways in the soil which are far from the sampling device. Some environmental investigators avoid the impact of this problem by reasoning that contaminant quantities in the soil are so great that they are detected despite atmospheric mixing. For qualitative approaches with non-rigorous quality assurance/quality control (QA/QC) objectives this mixing problem can be insignificant. For detection of compounds that exhibit only marginal partitioning preference for the free vapor phase, the mixing problem can be a fatal flaw in procedure. Moreover, contaminant concentration and composition investigations can be rendered useless by variations in the magnitude of mixing at various sample locations and depths in a survey area.

    Comments on Limitations of Soil Gas MonitoringMany investigators believe that soil gas monitoring is not an effective vadose zone monitoring method for certain volatile organic applications, in certain geographic regions or during certain seasons of the year, or both. The applicability of soil gas monitoring is controlled by physical and chemical properties and processes in the subsurface and not by factors that are obvious at or above the surface. For example, one common misconception is that soil gas monitoring is not effective during the winter season. The impacts upon soil gas measurement of elevated soil pore water content, reduced vadose zone temperature and the presence of frost, typical of numerous regions in winter, are obvious for many facets of most soil gas monitoring methods. Modification of standard operating procedure, such as an increase in sampling depth, or selection of another soil gas monitoring method altogether can minimize the negative impacts of seasonal field conditions. It is important to understand that the responsibility for success or failure in soil gas monitoring can reside as much in the planning phase of a survey, including the method chosen, as in factors controlling the chemical and physical processes at work in the subsurface. Even with apparently ideal field conditions and with a carefully planned survey, soil gas monitoring can succeed or fail due to unknown factors controlling contaminant migration and emplacement. Soil gas monitoring is no different than any other measurement method, in that investigators must maximize effort in planning and implementation of procedure to maximize the likelihood of success.

    1. Scope

    1.1 This guide covers information pertaining to a broad spectrum of practices and applications of soil atmosphere sampling, including sample recovery and handling, sample analysis, data interpretation, and data reporting. This guide can increase the awareness of soil gas monitoring practitioners concerning important aspects of the behavior of the soil-water-gas-contaminant system in which this monitoring is performed, as well as inform them of the variety of available techniques of each aspect of the practice. Appropriate applications of soil gas monitoring are identified, as are the purposes of the various applications. Emphasis is placed on soil gas contaminant determinations in certain application examples.

    1.2 This guide suggests a variety of approaches useful to successfully monitor vadose zone contaminants with instructions that offer direction to those who generate and use soil gas data.

    1.3 This guide does not recommend a standard practice to follow in all cases nor does it recommend definite courses of action. The success of any one soil gas monitoring methodology is strongly dependent upon the environment in which it is applied.

    1.4 Concerns of practitioner liability or protection from or release from such liability, or both, are not addressed by this guide.

    1.5 This guide is organized into the following sections and subsections that address specific segments of the practice of monitoring soil gas:

    Section
    4Summary of Practice
    4.1Basic principles, including partitioning theory, migration and emplacement processes, and contaminant degradation
    4.7Summary Procedure
    5Significance and Use
    6Approach and Procedure
    6.1Sampling Methodology
    6.5Sample Handling and Transport
    6.6Analysis of Soil Gas Samples
    6.7Data Interpretation
    7Reporting

    1.6 This guide does not purport to set standard levels of acceptable risk. Use of this guide for purposes of risk assessment is wholly the responsibility of the user.

    1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

    1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    1.9 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word Standard in the title of this document means only that the document has been approved through the ASTM consensus process.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D653 Terminology Relating to Soil, Rock, and Contained Fluids

    D1356 Terminology Relating to Sampling and Analysis of Atmospheres

    D1357 Practice for Planning the Sampling of the Ambient Atmosphere

    D1452 Practice for Soil Exploration and Sampling by Auger Borings

    D1605 Practices for Sampling Atmospheres for Analysis of Gases and Vapors

    D1914 Practice for Conversion Units and Factors Relating to Sampling and Analysis of Atmospheres

    D2652 Terminology Relating to Activated Carbon

    D2820

    D3249 Practice for General Ambient Air Analyzer Procedures

    D3416

    D3584

    D3614 Guide for Laboratories Engaged in Sampling and Analysis of Atmospheres and Emissions

    D3670 Guide for Determination of Precision and Bias of Methods of Committee D22

    D3686 Practice for Sampling Atmospheres to Collect Organic Compound Vapors (Activated Charcoal Tube Adsorption Method)

    D3687 Practice for Analysis of Organic Compound Vapors Collected by the Activated Charcoal Tube Adsorption Method

    D4220 Practices for Preserving and Transporting Soil Samples

    D4490 Practice for Measuring the Concentration of Toxic Gases or Vapors Using Detector Tubes

    D4597 Practice for Sampling Workplace Atmospheres to Collect Gases or Vapors with Solid Sorbent Diffusive Samplers

    D4696 Guide for Pore-Liquid Sampling from the Vadose Zone

    D4700 Guide for Soil Sampling from the Vadose Zone

    D5088 Practice for Decontamination of Field Equipment Used at Waste Sites

    E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods

    E260 Practice for Packed Column Gas Chromatography

    E355 Practice for Gas Chromatography Terms and Relationships

    E594 Practice for Testing Flame Ionization Detectors Used in Gas or Supercritical Fluid Chromatography

    E697 Practice for Use of Electron-Capture Detectors in Gas Chromatography


    ICS Code

    ICS Number Code 91.120.25 (Seismic and vibration protection); 93.020 (Earth works. Excavations. Foundation construction. Underground works)

    UNSPSC Code

    UNSPSC Code


    Referencing This Standard

    DOI: 10.1520/D5314-92R06

    ASTM International is a member of CrossRef.

    Citation Format

    ASTM D5314-92(2006), Standard Guide for Soil Gas Monitoring in the Vadose Zone, ASTM International, West Conshohocken, PA, 2006, www.astm.org

    Back to Top