ASTM D4636 - 09

    Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils

    Active Standard ASTM D4636 | Developed by Subcommittee: D02.09.0D

    Book of Standards Volume: 05.02


    Buy Standard (PDF)
    10 pages
    $42.00
    Buy Standard (Print)
    10 pages
    $42.00
    Buy Standard + Redline (PDF)
    20 pages
    $50.40

    Historical (view previous versions of standard)

    Translated Standard: Russian
    more info


    ASTM D4636

    Significance and Use

    This test method simulates the environment encountered by fully formulated lubricating fluids in actual service and uses an accelerated oxidation rate to permit measurable results to be obtained in a reasonable time. The use of metals provides catalytic reactive surfaces of those materials commonly found in real systems. The high temperature and air agitation help accelerate the oxidation reactions that are expected to occur. Moisture in the air adds another realistic condition that encourages oil breakdown by facilitating acid formation.

    Interpretation of results should be done by comparison with data from oils of known field performance. The accelerated conditions likely will cause one or more of the following measurable effects: mass change and corroded appearance of some metals; change of viscosity; increase in acid number; measurable reaction products in the form of sludge; and mass loss of oil due to evaporation.

    This test method is most suitable for oils containing oxidation and corrosion inhibitors. Without such ingredient(s), the severe test conditions will yield rather drastic changes to the oil.

    1. Scope

    1.1 This test method covers the testing of hydraulic oils, aircraft turbine engine lubricants, and other highly refined oils to determine their resistance to oxidation and corrosion degradation and their tendency to corrode various metals. Petroleum and synthetic fluids may be evaluated using moist or dry air with or without metal test specimens.

    1.2 This test method consists of a standard test procedure, an alternative Procedure 1, and an alternative Procedure 2. As there are variations possible with this test method, it will be up to the particular specification to establish the conditions required. In addition to temperature, the variables to specify if other than those of the standard procedure or alternative Procedure 1 or 2 are: test time, air flow and humidity, sample frequency, test fluid quantity, and metal specimen(s).

    1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

    1.3.1 ExceptionThe values in parentheses in some of the figures are provided for information only for those using old equipment based on non-SI units.

    1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D91 Test Method for Precipitation Number of Lubricating Oils

    D445 Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity)

    D664 Test Method for Acid Number of Petroleum Products by Potentiometric Titration

    D1193 Specification for Reagent Water

    D3339 Test Method for Acid Number of Petroleum Products by Semi-Micro Color Indicator Titration

    U.S. Federal Test Method Standards

    MIL-S-13282 Refined Silver (99.95) (P07015)


    ICS Code

    ICS Number Code 75.100 (Lubricants, industrial oils and related products)

    UNSPSC Code

    UNSPSC Code 15121504(Hydraulic oil)


    DOI: 10.1520/D4636-09

    ASTM International is a member of CrossRef.

    ASTM D4636

    Citing ASTM Standards
    Back to Top