ASTM D276 - 12

    Standard Test Methods for Identification of Fibers in Textiles

    Active Standard ASTM D276 | Developed by Subcommittee: D13.51

    Book of Standards Volume: 07.01


      Format Pages Price  
    PDF Version 14 $48.00   ADD TO CART
    Print Version 14 $48.00   ADD TO CART
    Standard + Redline PDF Bundle 28 $57.60   ADD TO CART


    Significance and Use

    These test methods are a generally reliable means of identifying the generic types of fibers present in a sample of textile material of unknown composition. The methods are generally not useful for distinguishing fibers of the same generic class from different manufacturers or for distinguishing different fiber types of the same generic class from one producer.

    Many fibers are chemically modified by their producers in various ways so as to alter their properties. It is possible for such modifications to interfere seriously with the analyses used in these test methods. Considerable experience and diligence of the analyst may be necessary to resolve satisfactorily these difficulties.

    Dyes, lubricants, and delustrants are not present normally in amounts large enough to interfere with the analyses.

    These test methods are not recommended for acceptance testing of commercial shipments because of the qualitative nature of the results and because of the limitations previously noted.

    Note 2—For statements on precision and bias of the standard quantitative test methods for determining physical properties for confirmation of fiber identification refer to the cited test method. The precision and bias of the nonstandard quantitative test methods described are strongly influenced by the skill of the operator. The limited use of the test methods for qualitative identification cannot justify the effort that would be necessary to determine the precision and bias of the techniques.

    5.5 Qualitative and quantitative fiber identification is actively pursued by Committee RA24 (Fiber Identification) of AATCC and presented in AATCC Test Method 20 and Test Method 20A. Since precision and bias development is also part of the AATCC test methods, both AATCC and ASTM D13 have agreed that new development will take place in RA24. However, because there is valuable information still present in the ASTM standards, Test Methods D276 and D629 will be maintained as active standards by ASTM.

    1. Scope

    1.1 These test methods cover the identification of the following textile fibers used commercially in the United States:

    Acetate (secondary)Nylon
    Acrylic Nytril
    Anidex Olefin
    Aramid Polycarbonate
    AsbestosPolyester
    Cotton Ramie
    Cuprammonium rayonRayon (viscose)
    Flax Saran
    FluorocarbonSilk
    Glass Spandex
    Hemp Triacetate
    Jute Vinal
    LycocellVinyon
    ModacrylicWool
    Novoloid

    1.2 Man-made fibers are listed in 1.1 under the generic names approved by the Federal Trade Commission and listed in Terminology D123, Annex A1 (except for fluorocarbon and polycarbonate). Many of the generic classes of man-made fibers are produced by several manufacturers and sold under various trademark names as follows (Note 1):

    Acetate Acele®, Aviscon®, Celanese®, Chromspun®, Estron®
    Acrylic Acrilan®, Courtelle®, Creslan®, Dralon®, Orlon®, Zefran®
    Anidex Anim/8®
    Aramid Kevlar®, Nomex®, Technora®, TeijinConex®, Twaron®
    CuprammoniumBemberg®
    FluorocarbonTeflon®
    Glass Fiberglas®, Garan®, Modiglass®, PPG®, Ultrastrand®
    Lyocell Tencel®
    ModacrylicDynel®, Kanecaron®, Monsanto SEF®, Verel®
    NovoloidKynol®
    Polyamide
    (Nylon) 6Caprolan®,Enka®, Perlon®, Zefran®, Enkalon®
    Polyamide
    (Nylon) 6, 6Antron®, Blue C®, Cantrece®, Celanese Phillips®, Enka®Nylon
    Polyamide
    (Nylon) (other)Rilsan®(nylon 11), Qiana®, StanylEnka®,(Nylon 4,6)
    Nytril Darvan®
    Olefin Durel®, Herculon®, Marvess®, Polycrest®
    PolyesterAvlin®, Beaunit®, Blue C®, Dacron®, Encron®, Fortrel®, Kodel®, Quintess®, Spectran®, Trevira®, Vyoron®, Zephran®, Diolen®, Vectran®
    Rayon Avril®, Avisco®, Dynacor®, Enka®, Fiber 700®, Fibro®, Nupron®, Rayflex®, Suprenka®, Tyrex®, Tyron®, Cordenka®
    Saran Enjay®, Saran®
    Spandex Glospun®, Lycra®, Numa®, Unel®
    TriacetateArnel®
    Vinyon Avisco®, Clevyl®, Rhovyl®, Thermovyl®, Volpex®

    Note 1—The list of trademarks in 1.2 contains only examples and does not include all brands produced in the United States or abroad and imported for sale in the United States. The list does not include examples of fibers from two (or more) generic classes of polymers spun into a single filament. Additional information on fiber types and trademarks is given in Refs (1, 2, and 3).

    1.3 Most manufacturers offer a variety of fiber types of a specific generic class. Differences in tenacity, linear density, bulkiness, or the presence of inert delustrants normally do not interfere with analytic tests, but chemical modifications (for such purposes as increased dyeability with certain dyestuffs) may affect the infrared spectra and some of the physical properties, particularly the melting point. Many generic classes of fibers are sold with a variety of cross-section shapes designed for specific purposes. These differences will be evident upon microscopical examination of the fiber and may interfere with the measurements of refractive indices and birefringence.

    1.4 Microscopical examination is indispensable for positive identification of the several types of cellulosic and animal fibers, because the infrared spectra and solubilities will not distinguish between species. Procedures for microscopic identification are published in AATCC Method 20 and in References (4-12).

    1.5 Analyses by infrared spectroscopy and solubility relationships are the preferred methods for identifying man-made fibers. The analysis scheme based on solubility is very reliable. The infrared technique is a useful adjunct to the solubility test method. The other methods, especially microscopical examination are generally not suitable for positive identification of most man-made fibers and are useful primarily to support solubility and infrared spectra identifications.

    1.6 These test methods include the following sections:

    Section
    Scope1
    Referenced Documents2
    Terminology3
    Summary of Test Methods4
    Significance and Use5
    Sampling, Selection, Preparation and Number of Specimens6
    Reference Standards7
    Purity of Reagents8
    Fiber Identification by
    Microscopic Examination9,10
    Solubility Relationships11-16
    Infrared Spectroscopy17-23
    Physical Properties to Confirm Identification
    Density24-27
    Melting Point28-33
    Birefringence by Difference of 34 and 35
    Refractive Indices

    1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Note 3.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D123 Terminology Relating to Textiles

    D629 Test Methods for Quantitative Analysis of Textiles

    D792 Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement

    D941 Test Method for Density and Relative Density (Specific Gravity) of Liquids by Lipkin Bicapillary Pycnometer

    D1217 Test Method for Density and Relative Density (Specific Gravity) of Liquids by Bingham Pycnometer

    D1776 Practice for Conditioning and Testing Textiles

    E131 Terminology Relating to Molecular Spectroscopy

    E175 Terminology of Microscopy

    AATCC Method

    TestMethod20A Fiber Analysis: Quantitative


    ICS Code

    ICS Number Code 59.060.01 (Textile fibres in general)

    UNSPSC Code

    UNSPSC Code 11151500(Fibers)


    DOI: 10.1520/D0276-12

    ASTM International is a member of CrossRef.

    ASTM D276

    Citing ASTM Standards
    Back to Top