You are being redirected because this document is part of your ASTM Compass® subscription.
    This document is part of your ASTM Compass® subscription.

    ASTM D1868 - 13

    Standard Test Method for Detection and Measurement of Partial Discharge (Corona) Pulses in Evaluation of Insulation Systems

    Active Standard ASTM D1868 | Developed by Subcommittee: D09.12

    Book of Standards Volume: 10.01

      Format Pages Price  
    PDF 11 $50.00   ADD TO CART
    Hardcopy (shipping and handling) 11 $50.00   ADD TO CART
    Standard + Redline PDF Bundle 22 $60.00   ADD TO CART

    Significance and Use

    5.1 The presence of partial discharges (corona) at operating voltage in an insulation system has the potential to result in a significant reduction in the life of the insulating material. Some materials are more susceptible to such discharge damage than others. This characteristic can be investigated using Test Method D2275.

    5.2 The presence of partial discharges (corona) in an apparently solid insulation is a potential indication of the existence of internal cavities. Partial discharge tests have been useful in the design and inspection of molded, laminated, and composite insulation, as well as specimens in the form of cables, capacitors, transformers, bushings, stator bars, and rotating machines (1), (2), (3), (4), (5), (6), (7), (8), (9), (13), and (12). (See also AEIC CS5-87, ICEA T-24-380, IEEE 48, IEEE C57 113-1991, IEEE C57 124-1991, and IEEE 1434-2005.)

    5.3 Partial discharge (corona) inception and extinction voltages are used in the determination of the limiting voltage at which an insulation system will operate free of such discharges. The extinction voltage is often substantially lower than the inception voltage. Where the operating voltage is below the inception voltage but above the extinction voltage, it is possible that a transient over-voltage will initiate discharges which then continue until the voltage is lowered below the extinction voltage. Inception and extinction voltages depend upon many factors, including temperature and the rate at which the voltage is changed. After a time at a voltage, it is possible that discharges will start and stop in a nonuniform and unpredictable fashion, especially for discharges within cavities in certain materials, in particular if the discharge degradation products formed are conductive (1), (5).

    5.4 The magnitude (pulse height) of a partial discharge is an indication of the amount of energy that it dissipates in the insulation system. Partial discharge magnitude and pulse rate are useful in estimating the rate, or change of rate, at which deterioration is produced.

    5.5 In general, the occurrence of partial discharges is not directly related to the basic properties of a solid insulating material, but usually results from overstressing of gaseous occlusions or similar imperfections or discontinuities in an insulating system. It is possible that partial discharges will originate at locations such as on the leads or terminals without resulting in any hazard within the main part of the insulation system.

    1. Scope

    1.1 This test method covers the detection and measurement of partial discharge (corona) pulses at the terminals of an insulation system under an applied test voltage, including the determination of partial discharge (corona) inception and extinction voltages as the test voltage is raised and lowered. The test method is also useful in determining quantities such as apparent charge and pulse repetition rate together with such integrated quantities as average current, quadratic rate and power. The test method is useful for test voltages ranging in frequency from zero (direct voltage) to approximately 2000 Hz.

    1.2 The test method is directly applicable to a simple insulation system that can be represented as a two-terminal capacitor (1), (2) .

    1.3 The test method is also applicable to (distributed parameter) insulation systems such as high-voltage cable. Consideration must be given to attenuation and reflection phenomena in this type of system. Further information on distributed parameter systems of cables, transformers, and rotating machines will be found in Refs. (1), (2), (3), (4), (5), (6), (7), (8), and (9).2 (See AEIC CS5-87, IEEE C57 113-1991, IEEE C57 124-1991, and IEEE 1434-2005.)

    1.4 The test method can be applied to multi-terminal insulation systems, but at some loss in accuracy, especially where the insulation of inductive windings is involved.

    1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precaution statements are given in Sections 8 and 14.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D149 Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies

    D618 Practice for Conditioning Plastics for Testing

    D2275 Test Method for Voltage Endurance of Solid Electrical Insulating Materials Subjected to Partial Discharges (Corona) on the Surface

    D3382 Test Methods for Measurement of Energy and Integrated Charge Transfer Due to Partial Discharges (Corona) Using Bridge Techniques

    ICS Code

    ICS Number Code 29.080.30 (Insulation systems)

    UNSPSC Code

    UNSPSC Code 32121500(Capacitors)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/D1868

    ASTM International is a member of CrossRef.

    Citation Format

    ASTM D1868-13, Standard Test Method for Detection and Measurement of Partial Discharge (Corona) Pulses in Evaluation of Insulation Systems, ASTM International, West Conshohocken, PA, 2013,

    Back to Top