ASTM C1778 - 16

    Standard Guide for Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete

    Active Standard ASTM C1778 | Developed by Subcommittee: C09.50

    Book of Standards Volume: 04.02

      Format Pages Price  
    PDF 11 $51.00   ADD TO CART
    Hardcopy (shipping and handling) 11 $51.00   ADD TO CART
    Standard + Redline PDF Bundle 22 $61.20   ADD TO CART

    Significance and Use

    5.1 This guide provides recommendations for identifying the potential for deleterious AAR and selecting appropriate preventive measures, based on a prescriptive-based or performance approach, to minimize the risk of deleterious reaction. In regions where occurrences of AAR are rare or the aggregate sources in use have a satisfactory field performance record verified by following the guidance in this standard, it is reasonable to continue to rely on the previous field history without subjecting the aggregates to laboratory tests for AAR. In regions where AAR problems have occurred or the reactivity of aggregates is known to vary from source to source, it may be necessary to follow a testing program to determine potential reactivity and evaluate preventive measures. In this guide, the level of prevention required is a function of the reactivity of the aggregate, the nature of the exposure conditions (especially availability of moisture), the criticality of the structure, and the availability of alkali in the concrete.

    5.2 Risk Evaluation—To use this guide effectively, it is necessary to define the level of risk that is acceptable, as this will determine the type and complexity of testing (Note 1). The risk of deleterious expansion occurring as a result of a failure to detect deleteriously reactive aggregates can be reduced by routine testing using petrography, or laboratory expansion tests, or both.

    Note 1: The level of risk of alkali-silica reaction will depend upon the nature of the project (criticality of the structure and anticipated exposure). The determination of the level of risk is the responsibility of the individual in charge of the design, commonly a representative of the owner, and for structures designed in accordance with ACI 318, the level of acceptable risk would be determined by the licensed design professional.

    5.3 For conventional structures, preventive measures determined by either performance testing or the prescriptive approach described in this guide can be expected to generally reduce the risk of expansion as a result of ASR to an acceptable level. For certain critical structures, such as those exposed to continuous moisture (for example, hydraulic dams or power plants), in which ASR-related expansion cannot be tolerated, more conservative mitigation measures may be warranted.

    5.4 There are no proven measures for effectively preventing damaging expansion with alkali carbonate reactive rocks in concrete and such materials need to be avoided.

    5.5 If an aggregate is identified as potentially deleteriously reactive as a result of ASR, and the structure size, class, and exposure condition requires preventive measures, the aggregate may be accepted for use together with appropriate preventive measures following the prescriptive or performance methods outlined in this guide.

    1. Scope

    1.1 This guide provides guidance on how to address the potential for deleterious alkali aggregate reaction (AAR) in concrete construction. This guide addresses the process of identifying both potentially alkali-silica reactive (ASR) and alkali-carbonate reactive (ACR) aggregates through standardized testing procedures and the selection of mitigation options to minimize the risk of expansion when ASR aggregates are used in concrete construction. Mitigation methods for ASR aggregates are selected using either prescriptive or performance-based alternatives. Preventive measures for ACR aggregates are limited to avoidance of use. Because the potential for deleterious reactions depends not only on the concrete mixture but also the in-service exposure, guidance is provided on the type of structures and exposure environments where AAR may be of concern.

    1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.

    1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    C33/C33M Specification for Concrete Aggregates

    C125 Terminology Relating to Concrete and Concrete Aggregates

    C150/C150M Specification for Portland Cement

    C294 Descriptive Nomenclature for Constituents of Concrete Aggregates

    C295 Guide for Petrographic Examination of Aggregates for Concrete

    C311 Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete

    C586 Test Method for Potential Alkali Reactivity of Carbonate Rocks as Concrete Aggregates (Rock-Cylinder Method)

    C595 Specification for Blended Hydraulic Cements

    C618 Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

    C823/C823M Practice for Examination and Sampling of Hardened Concrete in Constructions

    C856 Practice for Petrographic Examination of Hardened Concrete

    C989 Specification for Slag Cement for Use in Concrete and Mortars

    C1105 Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction

    C1157 Performance Specification for Hydraulic Cement

    C1240 Specification for Silica Fume Used in Cementitious Mixtures

    C1260 Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)

    C1293 Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction

    C1567 Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method)

    ACI Standard

    ACI 318

    AASHTO Standard

    AASHTO PP 65 Standard Practice for Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction

    CSA Standards

    A23.2-26A Determination of Potential Alkali-Carbonate Reactivity of Quarried Carbonate Rocks by Chemical Composition


    A23.2-28A Standard Practice for Laboratory Testing to Demonstrate the Effectiveness of Supplementary Cementing Materials and Lithium-Based Admixtures to Prevent Alkali-Silica Reaction in Concrete

    UNSPSC Code

    UNSPSC Code 30111500(Concrete and mortars)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/C1778-16

    ASTM International is a member of CrossRef.

    Citation Format

    ASTM C1778-16, Standard Guide for Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete, ASTM International, West Conshohocken, PA, 2016,

    Back to Top