ASTM C1562 - 10

    Standard Guide for Evaluation of Materials Used in Extended Service of Interim Spent Nuclear Fuel Dry Storage Systems

    Active Standard ASTM C1562 | Developed by Subcommittee: C26.13

    Book of Standards Volume: 12.01


      Format Pages Price  
    PDF 25 $62.00   ADD TO CART
    Hardcopy (shipping and handling) 25 $62.00   ADD TO CART
    Standard + Redline PDF Bundle 50 $74.40   ADD TO CART


    Significance and Use

    Information is provided in this document and other referenced documents to assist the licensee and the licensor in analyzing the materials aspects of performance of SNF and DCSS components during extended storage. The effects of the service conditions of the first licensing period are reviewed in the license renewal process. These service conditions are highlighted and discussed in Annex A1 as factors that affect materials performance in an ISFSI. Emphasis is on the effects of time, temperature, radiation, and the environment on the condition of the SNF and the performance of components of ISFSI storage systems.

    The storage of SNF that is irradiated under the regulations of 10 CFR Part 50 is governed by regulations in 10 CFR Part 72. Regulatory requirements for the subsequent geologic disposal of this SNF are presently given in 10 CFR Part 60, with specific requirements for the use of Yucca Mountain as a repository being given in the regulatory requirements of 10 CFR Part 63. Between the life-cycle phases of storage and disposal, SNF may be transported under the requirements of 10 CFR Part 71. Therefore, in storage, it is important to acknowledge the transport and disposal phases of the life cycle. In doing this, the materials properties that are important to these subsequent phases are to be considered in order to promote successful completion of these subsequent phases in the life cycle of SNF. Retrievability of SNF (or high-level radioactive waste) is set as a requirement in 10 CFR Part 72.122(g)(5) and 10 CFR Part 72.122(l). Care should be taken in operations conducted prior to disposal, for example, storage, transfer, and transport, to ensure that the SNF is not abused and that SNF assemblies will be retrievable, the protective value of the cladding is not degraded and remains capable of serving as an active barrier to radionuclide release during transfer and transport operations. It is possible that cladding could be altered during dry storage. The hydrogen effects, fracture toughness of the cladding and the creep behavior are important parameters to be evaluated and controlled during the dry storage phase of the life cycle. These degradation mechanisms are discussed in Annex A2 and Annex A4.

    1. Scope

    1.1 Part of the total inventory of commercial spent nuclear fuel (SNF) is stored in dry cask storage systems (DCSS) under licenses granted by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this guide is to provide information to assist in supporting the renewal of these licenses, safely and without removal of the SNF from its licensed confinement, for periods beyond those governed by the term of the original license. This guide provides information on materials behavior under conditions that may be important to safety evaluations for the extended service of the renewal period. This guide is written for DCSS containing light water reactor (LWR) fuel that is clad in zirconium alloy material and stored in accordance with the Code of Federal Regulations (CFR), at an independent spent-fuel storage installation (ISFSI). The components of an ISFSI, addressed in this document, include the commercial SNF, canister, cask, and all parts of the storage installation including the ISFSI pad. The language of this guide is based, in part, on the requirements for a dry SNF storage license that is granted, by the U.S. Nuclear Regulatory Commission (NRC), for up to 20 years. Although government regulations may differ for various nations, the guidance on materials properties and behavior given here is expected to have broad applicability.

    1.2 This guide addresses many of the factors affecting the time-dependent behavior of materials under ISFSI service [10 CFR Part 72.42]. These factors are those regarded to be important to performance, in license extension, beyond the currently licensed 20-year period. Examples of these factors are given in this guide and they include materials alterations or environmental conditions for components of an ISFSI system that, over time, could have significance related to safety. For purposes of this guide, a license period of an additional 20 to 80 years is assumed.

    1.3 This guide addresses the determination of the conditions of the spent fuel and storage cask materials at the end of the initial 20-year license period as the result of normal events and conditions. However, the guide also addresses the analysis of potential spent fuel and cask materials degradation as the result of off-normal, and accident-level events and conditions that may occur during any period.

    1.4 This guide provides information on materials behavior to support continuing compliance with the safety criteria, which are part of the regulatory basis, for licensed storage of SNF at an ISFSI. The safety functions addressed and discussed in this standard guide include thermal performance, radiological protection, confinement, sub-criticality, and retrievability. The regulatory basis includes 10 CFR Part 72 and supporting regulatory guides of the U.S. Nuclear Regulatory Commission. The requirements set forth in these documents indicate that the following items were considered in the original licensing decisions: properties of materials, design considerations for normal and off-normal service, operational and natural events, and the bases for the original calculations. These items may require reconsideration of the safety-related arguments that demonstrate how the systems continue to satisfy the regulatory requirements. Further, to ensure continued safe operation, the performance of materials must be justified in relation to the effects of time, temperature, radiation field, and environmental conditions of normal and off-normal service. Arguments for long-term performance must account for materials alterations (especially degradations) that are expected during the service periods, which include the periods of the initial license and of the license renewal. This guide pertains only to structures, systems, and components important to safety during extended storage period and during retrieval functions, including transport and transfer operations. Materials information that pertains to safety functions, including retrieval functions, is pertinent to current regulations and to license renewal process, and this information is the focus of the guide. This guide is not intended to supplant the existing regulatory process.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    C33 Specification for Concrete Aggregates

    C227 Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method)

    C295 Guide for Petrographic Examination of Aggregates for Concrete

    C859 Terminology Relating to Nuclear Materials

    C1174 Practice for Prediction of the Long-Term Behavior of Materials, Including Waste Forms, Used in Engineered Barrier Systems (EBS) for Geological Disposal of High-Level Radioactive Waste


    ICS Code

    ICS Number Code 27.120.01 (Nuclear energy in general)

    UNSPSC Code

    UNSPSC Code 15131500(Nuclear fuel)


    DOI: 10.1520/C1562-10

    ASTM International is a member of CrossRef.

    ASTM C1562

    Citing ASTM Standards
    Back to Top