ASTM C1030 - 10

    Standard Test Method for Determination of Plutonium Isotopic Composition by Gamma-Ray Spectrometry

    Active Standard ASTM C1030 | Developed by Subcommittee: C26.10

    Book of Standards Volume: 12.01


      Format Pages Price  
    PDF 8 $42.00   ADD TO CART
    Hardcopy (shipping and handling) 8 $42.00   ADD TO CART
    Standard + Redline PDF Bundle 16 $50.40   ADD TO CART


    Significance and Use

    The determination of plutonium isotopic composition by gamma-ray spectrometry is a nondestructive technique and when used with other nondestructive techniques, such as calorimetry (Test Method C1458) or neutron counting (Test Methods C1207, C1316, C1493, and C1500), can provide a wholly nondestructive plutonium assay necessary for material accountancy and safeguards needs.

    Because gamma-ray spectrometry systems are typically automated, the routine use of the test method is fast, reliable, and is not labor intensive. The test method is nondestructive, requires no sample preparation, and does not create waste disposal problems.

    This test method assumes that all plutonium in the measured item has the same isotopic distribution, often called isotopic homogeneity (see 7.2.4 and 7.2.5).

    The 242Pu abundance is not measured by this test method and must be estimated from isotopic correlation techniques, stream averages, historical information, or other measurement techniques.

    Americium-241 is a daughter product of 241Pu. The 241Am/239Pu atom ratio can also be determined by means of this test method (assuming a homogeneous isotopic distribution of plutonium and 241Am). The determination of the 241Am/239Pu atom ratio is necessary for the correct interpretation of a calorimetric heat measurement.

    The isotopic composition of a given batch or item of plutonium is an attribute of that item and, once determined, can be used in subsequent inventory measurements to verify the identity of an item within the measurement uncertainties.

    The method can also measure the ratio of other gamma-emitting isotopes to plutonium assuming they have the same spatial distribution as the plutonium in the item. Some of these other gamma-emitting isotopes include isotopes of uranium, neptunium, curium, cesium, and other fission products. The same methods of this standard can be used to measure the isotopic composition of uranium in items containing only uranium (3, 4, 5, 6).

    1. Scope

    1.1 This test method is applicable to the determination of isotopic abundances in isotopically homogeneous plutonium-bearing materials. This test method may be applicable to other plutonium-bearing materials, some of which may require modifications to the described test method.

    1.2 The procedure is applicable to items containing plutonium masses ranging from a few tens of milligrams up to the maximum plutonium mass allowed by criticality limits.

    1.3 Measurable gamma ray emissions from plutonium cover the energy range from approximately 30 keV to above 800 keV. K-X-ray emissions from plutonium and its daughters are found in the region around 100 keV. This test method has been applied to all portions of this broad spectrum of emissions.

    1.4 The isotopic abundance of the 242Pu isotope is not directly determined because it has no useful gamma-ray signature. Isotopic correlation techniques may be used to estimate its relative abundance Refs (1) and (2).

    1.5 This test method has been demonstrated in routine use for isotopic abundances ranging from 99 to <50 % 239Pu. This test method has also been employed for isotopic abundances outside this range.

    1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

    1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    C697 Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Plutonium Dioxide Powders and Pellets

    C698 Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Mixed Oxides ((U, Pu)O2)

    C982 Guide for Selecting Components for Energy-Dispersive X-Ray Fluorescence (XRF) Systems

    C1207 Test Method for Nondestructive Assay of Plutonium in Scrap and Waste by Passive Neutron Coincidence Counting

    C1316 Test Method for Nondestructive Assay of Nuclear Material in Scrap and Waste by Passive-Active Neutron Counting Using 252Cf Shuffler

    C1458 Test Method for Nondestructive Assay of Plutonium, Tritium and 241Am by Calorimetric Assay

    C1493 Test Method for Non-Destructive Assay of Nuclear Material in Waste by Passive and Active Neutron Counting Using a Differential Die-Away System

    C1500 Test Method for Nondestructive Assay of Plutonium by Passive Neutron Multiplicity Counting

    E181 Test Methods for Detector Calibration and Analysis of Radionuclides

    E267 Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances

    ANSI Standards

    ANSIN15.36 Measurement Control Program - Nondestructive Assay Measurement Control and Assurance


    ICS Code

    ICS Number Code 27.120.30 (Fissile materials and nuclear fuel technology)

    UNSPSC Code

    UNSPSC Code 12141735(Plutonium Pu); 41111812(Gamma ray radiography examination equipment)


    DOI: 10.1520/C1030-10

    ASTM International is a member of CrossRef.

    ASTM C1030

    Citing ASTM Standards
    Back to Top