Fracture Resistance Testing of Monolithic and Composite Brittle Materials

    Salem JA, Quinn GD, Jenkins MG
    Published: 2002

      Format Pages Price  
    PDF (5.1M) $116   ADD TO CART
    Hardcopy (shipping and handling) $116   ADD TO CART
    Hardcopy + PDF Bundle - Save 25%
    (shipping and handling)
    $174.00   ADD TO CART

    STP 1409 features 14 peer-reviewed papers that summarize the latest methods for the measurement of fracture toughness, slow crack growth, and biaxial strength. It also identifies new areas for fracture toughness test methods development and standardization, such as testing of complex materials, elevated temperature measurement, and R-curve measurement.

    5 sections cover:

    Plenary Session--discusses 30 years of progress in fracture mechanics of brittle materials.

    Implications For Design and Testing--focuses on the analysis of plates for biaxial strength testing and the transition in measured fracture toughness from a value associated with the properties of a single grain to the polycrystalline value.

    Fracture Toughness Standardization--examines 3 techniques that were developed and standardized as part of ASTM C 1421 Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperatures. These techniques show convergence when good metrology is employed. In addition to standardized techniques, this section discusses the single edged V-notched beam method that is on a fast track for standardization in Europe.

    Crack Growth Resistance--covers testing of functionally graded materials, elevated temperature R-curve testing, and the study of a toughening mechanism. Although most researchers applied classical mechanical techniques for the measurement of fracture toughness or crack growth resistance, both theoretical and fractographic methods were also presented.

    Unique Materials and Environmental Effects--examines elevated temperature fracture toughness testing of particulate reinforced ceramic composites, thermal and environmental effects on the fracture toughness of titanium carbonitrides for machining, and environmental interactions that lead to rate effects in "dynamic fatigue" (i.e., stress corrosion) testing.

    Audience: Mechanical Engineers • Ceramic Engineers • Materials Scientists • Designers

    Table of Contents

    Fracture Mechanics of Brittle Ceramics - 30 Years of Progress
    Bradt R.

    Failure from Large Grains in Polycrystalline Ceramics: Transitions in Fracture Toughness
    Freiman S.

    Stresses in Ceramic Plates Subjected to Loading Between Concentric Rings
    Powers L., Salem J., Weaver A.

    Development, Verification, and Implementation of a National Full Consensus Fracture Toughness Test Method Standard for Advanced Ceramics
    Bar-On I., Jenkins M., Quinn G., Salem J.

    Does Anyone Know The Real Fracture Toughness? SRM 2100: The World's First Ceramic Fracture Toughness Reference Material
    Gettings R., Quinn G., Salem J., Swab J., Xu K.

    Fracture Toughness of Ceramics using the SEVNB Method: From a Preliminary Study to a Standard Test Method
    Kübier J.

    The Fracture Toughness Round Robins in VAMAS: What We Have Learned
    Quinn G.

    R-Curve Measurement of Silicon Nitride Based Ceramics at Elevated Temperatures with Single Edge Notched Beam Specimens
    Sakaguchi S.

    Crack Deflection Toughening Mechanism in Brittle Materials
    Awaji H., Choi S., Ebisudani M., Ohashi T.

    Application of Quantitative Fractography to the Characterization of R-Curve Behavior
    Chen Z., Hill T., Mecholsky J.

    Fracture Testing of a Layered Functionally Graded Material
    Carpenter R., Gibeling J., Hill M., Munir Z., Paulino G.

    Environmental and Thermal Effects on the Toughness of TiCN-Based Materials
    Bellosi A., de Portu G., Guicciardi S., Melandri C., Monteverde F.

    Fracture Toughness Studies on Ceramics and Ceramic Particulate Composites at Different Temperatures
    Gogotsi G.

    The Effect of Stress Rate on Slow Crack Growth Parameter Estimates
    Jenkins M., Salem J.

    Committee: C28

    DOI: 10.1520/STP1409-EB

    ISBN-EB: 978-0-8031-5461-2

    ISBN-13: 978-0-8031-2880-4

    ASTM International is a member of CrossRef.