STP1046V2

    Response of Ferritic/Martensitic Steels to Neutrons at Irradiation Temperatures from 20 to 823 K

    Published: Jan 1990


      Format Pages Price  
    PDF (504K) 18 $25   ADD TO CART


    Abstract

    The objectives of this work are to evaluate mechanical property changes by means of small specimen testing techniques, to evaluate the influence of the cascade damage produced by 14-MeV neutrons from RTNS-II on microstructural evolution, and to understand mechanical property changes in term of microstructural evolution at irradiation temperatures of from 20 to 823 K.

    The fluence dependence of mechanical properties showed a trend towards irradiation hardening for room temperature and for low temperature irradiations. At elevated temperatures, radiation softening was observed. The transition from hardening to softening was chemical composition sensitive and was closely related to microstructural developments. The fluence dependence of the irradiation hardening could be understood as dispersion hardening from irradiation-induced complex defects. The temperature dependence of yield stress for 20 K irradiated specimens suggested that the thermal component of yield stress can be understood also by a dispersion hardening mechanism resulting from defect clusters. The thermal component of irradiation hardening was dominant in 20-K irradiated specimens, and was virtually annealed out at room temperature. On the other hand, 300 K irradiation mainly produced an athermal component of irradiation hardening, which was about half of that for 20 K irradiated specimens.

    Keywords:

    ferritic steels, tensile properties, 14-MeV neutrons, RTNS-II, microstructure, low temperature, elevated temperature, neutron irradiation, fractography, thermal control


    Author Information:

    Kohyama, Akira
    Associate professor, The University of Tokyo, Tokyo,

    Hamada, Kazusi
    Graduate student, The University of Tokyo, Tokyo,

    Asakura, Kentaro
    Research associate, The University of Tokyo, Tokyo,

    Matsui, Hideki
    Professor, Tohoku University, Sendai-City Miyagi,


    Paper ID: STP49463S

    Committee/Subcommittee: E10.08

    DOI: 10.1520/STP49463S


    CrossRef ASTM International is a member of CrossRef.