SYMPOSIA PAPER Published: 01 January 1990
STP49442S

Application of a United Kingdom Magnox Steel Irradiation Model to the HFIR Pressure Vessel

This report discusses the application of a model of irradiation hardening, originally developed for U.K. Magnox pressure vessel steels, in describing embrittlement in High Flux Isotope Reactor (HFIR) pressure vessel steels. In common with the HFIR, the steel pressure vessels of Magnox reactors were constructed from carbon-manganese mild steels in the 1960s and have since operated while receiving a high energy ( E > 1 Me V ) neutron flux of 1011 to 1.6 × 10 13 n m 2 s 1 . The operational temperature of Magnox vessels at “cold” locations (i.e. 167°C (333°F) to 225°C (437°F)) is somewhat higher than that of the HFIR vessel (50°C (122°F)). The model assumes that hardening has two contributors: a “radiation damage” term, which depends on neutron fluence, but not flux, and a copper precipitation term, which is flux dependent.

Good agreement is found between model predictions of embrittlement and experimental data from the HFIR surveillance program. The agreement can be further improved with only a small adjustment to the value chosen for the activation energy for copper diffusion. Contrary to limited experimental data obtained from higher flux irradiations in the Oak Ridge Research Reactor (ORR), the model does not predict a flux dependence in the range 1011 to 1017 n · m−2 s−1. Various suggestions are discussed that could rationalize this behavior, but further experimental data are required for more conclusive explanations.

Model predictions of embrittlement with continued operation of the HFIR at full power suggest that linear extrapolations of existing surveillance data with time are conservative—that is, they overestimate the actual embrittlement.

Author Information

Druce, Stephen, G.
Harwell Laboratory, Atomic Energy Authority, Oxfordshire, England
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: E10
Pages: 30–44
DOI: 10.1520/STP49442S
ISBN-EB: 978-0-8031-8887-7
ISBN-13: 978-0-8031-1266-7