STP1480

    Observations on Photo-Emission and the Process Zone of a Fatigue Crack

    Published: Jan 2007


      Format Pages Price  
    PDF (312K) 9 $25   ADD TO CART
    Complete Source PDF (29M) 9 $74   ADD TO CART


    Abstract

    Cyclic loading of a solid material induces a cyclic temperature fluctuation. The thermal cycle is asynchronous with the loading cycle when the strains are elastic. This is commonly known as the thermoelastic effect. In differential thermography, a sensitive infrared camera is used to measure this temperature variation; typically of the order of a few tens of milliKelvin. Since the magnitude of the temperature variation is proportional to the dilational strain, values of the surface elastic stress can be derived. Recent advances in infrared camera technology and data processing algorithms have enabled values of effective stress intensity factor ranges and the location of fatigue cracks to be determined from temperature fluctuations around the crack tip on the specimen surface. Careful observation in the region near a crack tip reveals deviations from the asynchronous behavior of the photon signal relative to the load cycle. Phase shifts up to π/8 are commonly observed. The spatial distribution of these phase shifts exhibits characteristic features which are described and discussed. The features in this distribution appear to be associated with high elastic strain gradients, regions of plasticity and contact between the crack faces. Interpretation of the phase shift and its spatial distribution may lead to a better understanding of the mechanics of fatigue crack growth.

    Keywords:

    thermoelasticity, fatigue crack, plastic zone


    Author Information:

    Patterson, Eann A.
    Professor, Michigan State University, East Lansing, MI

    Diaz, Francisco A.
    Assistant Professor, Universidad de Jaen, Jaén,

    Yates, John R.
    Professor, University of Sheffield, Sheffield,


    Paper ID: STP45517S

    Committee/Subcommittee: E08.05

    DOI: 10.1520/STP45517S


    CrossRef ASTM International is a member of CrossRef.