SYMPOSIA PAPER Published: 01 January 1976
STP38041S

Swelling and Tensile Property Changes in Neutron-Irradiated Type 316 Stainless Steel

Source

Specimens of Type 316 stainless steel, given different thermomechanical treatments resulting in either a cold-worked or solution-annealed and aged structure, were irradiated in the Experimental Breeder Reactor-II (EBR-II) at 500 to 600 °C (932 to 1112°F) to a fluence of 7.4 × 1026 neutrons (n)/m2 (E > 0.1 MeV). Three specimen configurations were used: small sheet tension specimens, small right-circular cylinders for immersion density, and thin foils for transmission electron microscopy (TEM). TEM revealed voids in all specimens. Immersion density indicated swelling in cold-rolled specimens only after irradiation at temperatures near 600°C (1112°F). Considerable recovery and precipitation were observed in the cold-rolled specimens. Results of tension tests revealed an increase in strength and decrease in ductility for specimens originally in a solution-annealed and aged condition. Cold-rolled specimens exhibited a decrease in strength and a slight increase in total elongation. True stress-true plastic strain was best described by the Ludwigson equation, σ = K3εn3 ± exp (K4 + n4ε), in all cases. Irradiation causes a decrease in the work-hardening exponent, n3, and strength factor, K3. After irradiation, the values of n3 and K3 tended toward common values for both preirradiation treatments.

Author Information

Garr, KR
Rockwell International Corporation, Canoga Park, Calif.
Pard, AG
Rockwell International Corporation, Canoga Park, Calif.
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: E10
Pages: 72–90
DOI: 10.1520/STP38041S
ISBN-EB: 978-0-8031-5543-5
ISBN-13: 978-0-8031-0388-7