STP870: In-Pile Creep Strain and Failure of Cold-Worked Type 316 Titanium Pressurized Tubes

    Boutard, J-L
    Scientists, Département de Technologie, Service de Recherches Métallurgiques Appliquées, Section de Métallurgie Physique Appliquée, Centre d'Etudes Nucléaires de Saclay, Gif-sur-Yvette Cédex,

    Maillard, A
    Scientists, Département de Technologie, Service de Recherches Métallurgiques Appliquées, Section de Métallurgie Physique Appliquée, Centre d'Etudes Nucléaires de Saclay, Gif-sur-Yvette Cédex,

    Carteret, Y
    Scientists, Département de Technologie, Service de Recherches Métallurgiques Appliquées, Section de Métallurgie Physique Appliquée, Centre d'Etudes Nucléaires de Saclay, Gif-sur-Yvette Cédex,

    Levy, V
    Scientists, Département de Technologie, Service de Recherches Métallurgiques Appliquées, Section de Métallurgie Physique Appliquée, Centre d'Etudes Nucléaires de Saclay, Gif-sur-Yvette Cédex,

    Boyer, J-M
    Scientists, Département de Technologie, Service de Recherches Métallurgiques Appliquées, Section de Métallurgie Physique Appliquée, Centre d'Etudes Nucléaires de Saclay, Gif-sur-Yvette Cédex,

    Pages: 14    Published: Jan 1985


    Abstract

    The in-pile creep and failure behavior of cold-worked Type 316 titanium pressurized tubes irradiated in the same rig at temperatures ranging from 430 to 480°C to 650 to 700°C up to 81.4 dpaF (French displacements per atom) maximum in PHENIX are presented and compared to monitors.

    At temperatures below 600°C, the in-pile hoop strains are consistent with the expected amount of irradiation creep. In the range of 650 to 700°C, the measured plastic strains are dose rate independent. This supports the assumption that the thermally controlled mechanisms dominate.

    Examinations by fractography and optical micrography show that the failures are intergranular either in-pile or out-of-pile. In both cases, the damage consists of intergranular wedge cracks, and no cavitation can be observed by transmission electron microscopy.

    The in-pile embrittlement that gives lower failure strain is to be associated with a decrease of the surface energy of grain boundaries rather than growth and coalescence of cavities.

    Keywords:

    radiation, radiation damage, in-pile creep, embrittlement, titanium stabilized Type 316


    Paper ID: STP37353S

    Committee/Subcommittee: E10.08

    DOI: 10.1520/STP37353S


    CrossRef ASTM International is a member of CrossRef.