SYMPOSIA PAPER Published: 01 January 1982
STP37048S

Beta-Quenching of Zircaloy Cladding Tubes in Intermediate or Final Size—Methods to Improve Corrosion and Mechanical Properties

Source

Three batches of Zircaloy-2 tubing were beta-quenched prior to the final cold-rolling, cold rolled 80 percent, and annealed at 475 to 575°C. A fourth batch was β-quenched in the final size. For comparison, standard tubing was included in all tests performed. The second-phase particles were studied by means of optical and scanning electron microscopy. Corrosion testing was carried out at 400°C and in high-temperature (475 to 500°C) high-pressure steam. The mechanical tests comprised tension, burst, and creep testing under internal pressure.

Beta-quenching instead of an intermediate or the final anneal results in significant structural changes. The most striking features are the formation of a Widmanstätten structure consisting of plates of α-phase and the reprecipitation of much finer second-phase particles in the plate boundaries. Cold-rolling of β-quenched hollows followed by a final anneal in the α-range will give an equiaxed structure, but the size and distribution of the second phase obtained in β-quenching will not be markedly changed.

The weight gain at 400°C increases slightly as a result of β-quenching in intermediate or final size. In high-pressure steam at 475 to 500°C, on the other hand, such β-quenching has a dramatic beneficial effect on the corrosion resistance. At 500°C, for instance, specimens from tubing β-quenched in intermediate size show weight gain values of 55 to 95 mg/dm2, whereas specimens from standard tubing take values in the range 360 to 4280 mg/dm2. The explanation of this improvement seems to be the existence of small second-phase particles formed in α-plate boundaries as a result of dissolution and reprecipitation during β heat treatment and quenching. Experiences from boiling water reactor (BWR) channel corrosion of β-quenched Zircaloy-4 indicate that the 475 to 500°C high-pressure steam test forecasts very well the in-reactor resistance of Zircaloys to nodular corrosion under BWR conditions.

The short-term strength as measured in tension and burst testing is improved by β-quenching of hollows or finished tubes, whereas such treatment results in a slight drop in ductility, especially for tubing β-quenched in the final size. The 400°C transverse creep strength is increased by the introduction of β-quenching prior to the final cold-rolling. The improvement is caused mainly by small second-phase particles, formed during β-quenching, which give rise to precipitation hardening.

Author Information

Andersson, Th
Sandvik AB, Sandviken, Sweden
Vesterlund, G
ASEA-ATOM, Västerås, Sweden
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: B10
Pages: 75–95
DOI: 10.1520/STP37048S
ISBN-EB: 978-0-8031-4823-9
ISBN-13: 978-0-8031-0754-0