STP511

    On the Probabilistic Determination of Scatter Factors using Miner's Rule in Fatigue Life Studies

    Published: Jan 1972


      Format Pages Price  
    PDF (244K) 19 $25   ADD TO CART
    Complete Source PDF (2.7M) 19 $64   ADD TO CART


    Abstract

    A particular two-parameter family of life-length distributions for fatigue life is assumed. This family, first formulated by Freudenthal and Shinozuka in 1961, was systematically examined by Birnbaum and Saunders in 1968 where it was derived, using considerations from renewal theory, for the number of cycles needed to force a fatigue-crack extension to exceed a critical value. By employing this new family, tolerance bounds are obtained for the population of life times until fatigue failure under a programmed load. This is accomplished by utilizing a generalization of Miner's rule which computes the mean life under the programmed load in terms of the mean lives under simpler programmed loads at stress levels for which data are available. Such bounds have never been obtained previously for any other life-length distribution and the confidence level exactly determined. This paper concludes with an application of these results to a set of real fatigue data.

    Keywords:

    probability theory, distribution theory, loading, fatigue(materials), fatigue life, fatigue limit, scattering, crack propagation


    Author Information:

    Saunders, SC
    Washington State University, Pullman, Wash.


    Paper ID: STP35410S

    Committee/Subcommittee: E08.05

    DOI: 10.1520/STP35410S


    CrossRef ASTM International is a member of CrossRef.