SYMPOSIA PAPER Published: 01 January 1984
STP34470S

Flow Softening and Anneal Hardening in Two-Phase Zr-2.5Nb

Source

The flow properties of Zr-2.5Nb were determined in the (α + β) range at 998 and 1148 K, which corresponds to about 15 and 85 volume % β. The flow stresses were determined in axisymmetric compression at constant true strain rates ranging from 3.1 × 10−5 s−1 to 3.1 × 10−2 s−1.

The flow curves were characterized by a peak stress followed by considerable flow softening and, for strain rates less than 10−3 s−1, the flow stress for the large β-fraction materials dropped by only 25 to 30% of the peak stress as compared with 50 to 70% for the predominantly α-materials. The amount of flow softening also decreased with increasing coarseness of the prior α-plate morphology.

The α-plates rotated from an initially random to a distinctly transverse orientation, and at strain rates less than 10−3 s−1, the α-plate structure broke up to produce an equiaxed grain morphology. The strain rate sensitivity concurrently increased from 0.22 to 0.4.

Significant anneal hardening was observed in the predominantly or fully α-region after a β-heat treatment, the amount of which increased with time of holding in the β-region. The activation energy was approximately 140 kJ/mole, which is similar to that for the diffusion of niobium in β-zirconium. The anneal hardening is ascribed to the formation of niobium-rich clusters in the β-phase. These clusters seem to be retained in the α-phase on cooling. Part of the flow softening in the anneal-hardened material can be ascribed to declustering by deformation.

Author Information

Rizkalla, AS
Technical University of Nova Scotia, Halifax, N.S., Canada
Choubey, R
Combustion Engineering Superheater Ltd., Moncton, N.B., Canada
Jonas, JJ
McGill University, Montreal, P.Q., Canada
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: B10
Pages: 176–199
DOI: 10.1520/STP34470S
ISBN-EB: 978-0-8031-4895-6
ISBN-13: 978-0-8031-0270-5