STP969: Effect of Frequency on Fatigue Crack Growth Rate of Inconel 718 at High Temperature

    Weerasooriya, T
    Research Scientist, University of Dayton Research Institute, Dayton, OH

    Pages: 17    Published: Jan 1988


    Abstract

    Fatigue crack growth was studied at 650°C as a function of frequency for several ratios of minimum-to-maximum stress intensity (R) and for two values of maximum stress-intensity factor (Kmax), for a nickel-base superalloy, Inconel 718. All the tests were conducted under computer control at constant Kmax. Crack lengths were monitored at low frequencies from compliance calculations based on crack-mouth opening displacement measurements. At higher frequencies, crack length was measured using a d-c electric potential system. It was found that fatigue crack growth rate can be characterized in three distinct frequency regions. These three regions represent fully cycle-dependent, mixed, and fully time-dependent crack growth behavior, and each region can be modeled by a power law function. Observation of micromechanisms support the existence of these three different modes of crack growth.

    Keywords:

    fatigue crack growth, time-dependent growth, cyclic-dependent growth, nickelbase superalloy, crack growth rate model, frequency effects, fracture mechanics


    Paper ID: STP33112S

    Committee/Subcommittee: E08.06

    DOI: 10.1520/STP33112S


    CrossRef ASTM International is a member of CrossRef.