SYMPOSIA PAPER Published: 01 January 1981
STP28233S

Point-Defect Clustering in the Presence of Mobile Helium and Immobile Traps

Source

A time-dependent model for vacancy and interstitial clustering during irradiation has been modified to include both mobile helium and immobile (solute) traps. The helium interacts only with the vacancies; the solute atoms can trap either type of point defect. With parameters appropriate for nickel-silicon alloys, concentrations of vacancies, interstitials, divacancies, diinterstitials, interstitial helium, vacancy-helium pairs, vacancy-solute pairs, and interstitial-solute pairs were calculated as a function of time for a damage rate ˙n = 10−4 displacements per atom per second: a sink-annihilation probability, p = 10−8, corresponding to a dislocation density of ∼ 108 cm/cm3; T = 773 K; solute concentrations from 10−7 to 10−2 atom fraction; and helium production rates ˙nH = 10−10 and 10−8 atom per atom per second. Various vacancy clustering regimes are identified, and experimental implications of the results are discussed.

Author Information

Hall, BO
Materials Science Division, Westinghouse Research and Development Center, Pittsburgh, Pa.
Price: $25.00
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Developed by Committee: E10
Pages: 512–527
DOI: 10.1520/STP28233S
ISBN-EB: 978-0-8031-4794-2
ISBN-13: 978-0-8031-0755-7