STP972

    A Cumulative Damage Model for Continuous Fiber Composite Laminates with Matrix Cracking and Interply Delaminations

    Published: Jan 1988


      Format Pages Price  
    PDF Version (432K) 24 $25   ADD TO CART
    Complete Source PDF (9.2M) 24 $93   ADD TO CART


    Abstract

    Experimental evidence has shown that significant stiffness loss occurs in graphite/epoxy laminates when matrix cracking and interply delaminations exist. Therefore, a cumulative damage model for predicting stiffness loss in graphite/epoxy laminates is proposed herein by applying a thermomechanical constitutive theory for elastic composites with distributed damage. The model proceeds from a continuum mechanics and thermodynamics approach wherein the distributed damage is characterized by a set of second-order tensor-valued internal state variables. The internal state variables represent locally averaged measures of matrix cracking and interply delaminations. The model formulation provides a set of damage dependent laminated plate equations. These are developed by modifying the classical Kirchhoff plate theory. The effect of the matrix cracking enters the formulation through alteration in the individual lamina constitution. The effect of interply delamination enters the formulation through modifications of the Kirchhoff displacements. The corresponding internal state variables are defined utilizing the kinematics of the interply delaminated region and the divergence theorem. These internal state variables depend on the components of the displacements created by the delamination.

    Keywords:

    laminated composites, damage, graphite/epoxy, continuum mechanics, plate theory, internal state variables, matrix cracking, delamination


    Author Information:

    Allen, DH
    Professor, Texas A&M University, College Station, TX

    Groves, SE
    Research scientist, Lawrence Livermore National Laboratories, Livermore, CA

    Harris, CE
    Head, Fatigue and Fracture Branch, NASA Langley Research Center, Hampton, VA


    Paper ID: STP26128S

    Committee/Subcommittee: D30.02

    DOI: 10.1520/STP26128S


    CrossRef ASTM International is a member of CrossRef.