STP1080

    Effects of Environmental and Microstructural Variables on the Plastic Deformation of Metal Matrix Composites Under Changing Temperature Conditions

    Published: Jan 1990


      Format Pages Price  
    PDF (332K) 17 $25   ADD TO CART
    Complete Source PDF (4.8M) 17 $68   ADD TO CART


    Abstract

    A first order elastic-plastic model for the deformation of aligned, whisker-rein-forced metal matrix composites is developed. This model explains the experimentally observed weakening of these composites under thermal cycling conditions. This elastic plastic model and a more sophisticated power-law creep based model are used to demonstrate how deformation under stress and thermal cycling conditions will be affected by various environmental and microstructural variables. It is shown that the axial deformation rate is expected to increase with increasing amplitude and frequency of temperature cycles, and deformation rate should decrease with increasing matrix strength and whisker length. However, even continuous fiber reinforcement will allow for easy deformation if the composite is subjected to shear loading.

    Keywords:

    metal matrix composites, deformation, life prediction, thermal cycling, composite materials, thermal properties, mechanical properties


    Author Information:

    Daehn, GS
    Assistant professor, The Ohio State University, Columbus, OH


    Paper ID: STP25392S

    Committee/Subcommittee: E08.05

    DOI: 10.1520/STP25392S


    CrossRef ASTM International is a member of CrossRef.