STP1049

    Environmental Influence on the Effect of a Single Overload on the Fatigue Crack Growth Behavior on a High-Strength Aluminum Alloy

    Published: Jan 1990


      Format Pages Price  
    PDF (300K) 17 $25   ADD TO CART
    Complete Source PDF (14M) 17 $123   ADD TO CART


    Abstract

    The delaying effect of a single overload on the 2024 T351 aluminum alloy covering a wide ΔK range has been studied in ambient air, secondary vacuum, and high purity nitrogen (N2). It is shown that for a given environment and an overload ratio, the delay behavior can be rationalized in terms of the peak stress intensity factor corresponding to the overload for the studied test conditions. At low ΔK values, the overload effect is confined to a grain. The results obtained show that while the size of the overload affected zone is not affected by the environment, the number of delay cycles at an R ratio of 0.5 in vacuum can be ten times as high as that obtained in the two other environments. At an R ratio of 0.1, at low ΔK levels, the delaying effects can be similar in vacuum and in air. The observed effects are explained on the basis of mechanisms governing constant-amplitude crack growth behavior of the studied alloy.

    Keywords:

    fatigue crack propagation, overloads, delay, grain size, environmental effects, crack closure, micro-mechanisms, fatigue (materials), cracking


    Author Information:

    Ranganathan, N
    Seniore lecturer, Ecole National Supérieure de Mécanique et d'Aérotechnique, Cedex,

    Quintard, M
    Engineer; director of research; and professor and director of laboratory, Centre National de la Recherche Scientifique, Unité Associée n° 863, Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, Cedex,

    Petit, J
    Engineer; director of research; and professor and director of laboratory, Centre National de la Recherche Scientifique, Unité Associée n° 863, Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, Cedex,

    de Fouquet, J
    Engineer; director of research; and professor and director of laboratory, Centre National de la Recherche Scientifique, Unité Associée n° 863, Ecole Nationale Supérieure de Mécanique et d'Aérotechnique, Cedex,


    Paper ID: STP24076S

    Committee/Subcommittee: G01.06

    DOI: 10.1520/STP24076S


    CrossRef ASTM International is a member of CrossRef.