STP954

    The Effect of Defects on the Laser Damage Performance of Metal Mirror Surfaces

    Published: Jan 1986


      Format Pages Price  
    PDF Version (188K) 5 $25   ADD TO CART
    Complete Source PDF (8.6M) 5 $66   ADD TO CART


    Abstract

    From a laser damage standpoint, the optical surface is not isotropic as evidenced by the selected area damage phenomenon. This is because the modern processes that generate specular surfaces and coatings inherently introduce defects and damage into the bulk material. These defects then act as preferential sites for the onset of laser damage, and the distribution of these defects appears to affect almost all laser damage parameters. This paper presents the development of high resolution electron microscopy methods to identify deleterious imperfections in typical metal-mirror surfaces. Pulsed-laser damage testing of identical surfaces shows systematic changes in the damage resistance of the material that can be correlated directly to defects in the near-surface region. By this method, it is possible to identify trace impurities that are deleterious to high fluence optical components. In addition, one can now specify process parameters that will control not only surface roughness and figure, but will also control laser damage resistance.

    Keywords:

    defects, diamond turning, laser damage, optical materials


    Author Information:

    Hurt, HH
    Michelson Laboratory, Physics Division Naval Weapons Center, China Lake, California


    Paper ID: STP23107S

    Committee/Subcommittee: F01.19

    DOI: 10.1520/STP23107S


    CrossRef ASTM International is a member of CrossRef.