STP1032: Fatigue Testing and Damage Development in Continuous Fiber Reinforced Metal Matrix Composites

    Johnson, WS
    Senior research engineer, NASA Langley Research Center, Hampton, VA

    Pages: 28    Published: Jan 1989


    Abstract

    Continuous fiber reinforced metal matrix composites (MMC) are projected for use in high-temperature stiffness critical parts that will be subjected to cyclic loadings. This paper presents a general overview of the fatigue behavior of MMC. The objectives of this paper are twofold. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

    Keywords:

    metal matrix composites, continuous fiber, boron fibers, silicon-carbide fibers, FP fibers, aluminum, titanium, fatigue, matrix cracking, fiber/matrix interface


    Paper ID: STP22856S

    Committee/Subcommittee: D30.04

    DOI: 10.1520/STP22856S


    CrossRef ASTM International is a member of CrossRef.