STP1256

    Investigation of Fracture Mechanical Behaviour of Nodular Cast Iron and Welded Joints with Parent-Material-Like Weld Metal

    Published: Jan 1995


      Format Pages Price  
    PDF Version (344K) 15 $25   ADD TO CART
    Complete Source PDF (17M) 15 $109   ADD TO CART


    Abstract

    The focus of the investigations was the determination of fracture mechanical characteristics and crack resistance curves of the J-Integral and CTOD concept by application of the partial unloading compliance technique and D.C. potential drop technique (four point bend) under static load.

    The results show a close correlation between crack initiation values as well as crack resistance curves and graphite morphology parameters determined by means of quantitative microstructural analysis where the influence of the matrix (distance of graphite particles) dominates the crack resistance and fracture performance of ferritic nodular cast iron under consideration of the notch effect of graphite particles.

    SEM in-situ tensile tests showed that due to a beneficial shielding effect of the strength overmatching parent-material-like weld metal (mis-match ratio M=1.21), cracks positioned directly in the plane of the fusion line did not deviate into the weld metal in spite of its lower toughness compared to that of the parent material. They also showed an unsymetrical formation of damage in front of the crack tip.

    Keywords:

    fracture mechanics, crack resistance curves, nodular cast iron, quantitative graphite morphology parameters, welded joints, mis-matching, in-situ tensile test, ductile damage


    Author Information:

    Baer, W
    PhD-Student, Freiberg University of Mining and Technology, Institute of Materials Engineering, Freiberg/Sachsen, G.-Zeuner-Straβe

    Pusch, G
    Professor, Freiberg University of Mining and Technology, Institute of Materials Engineering, Freiberg/Sachsen, G.-Zeuner-Straβe


    Paper ID: STP16395S

    Committee/Subcommittee: E08.08

    DOI: 10.1520/STP16395S


    CrossRef ASTM International is a member of CrossRef.