Preparation and Characterization of Surfactant Coated Ce-Zr Nanoparticles and Nanofuel

    Published: Aug 2012

      Format Pages Price  
    PDF (5.2M) 15 $25   ADD TO CART
    Complete Source PDF (58M) 15 $55   ADD TO CART


    The use of the oxygen storing capacity (OSC) of CeO2 to enhance the conditioning of engine exhaust is being explored as a means to reduce the harmful products of emission. A doping agent, Zr, is used to further improve ceria's OSC and thermal stability. In this study, a high OSC endowed cerium-zirconium mixed-oxide (Ce0.6Zr0.4O2) three-way catalyst (TWC) was synthesized using a surfactant assisted co-precipitation method, and a stable suspension of the mixed oxide in diesel was prepared. The characterization of the mixed oxide and nanofuel was done using different analytical techniques, and the formation of a solid solution of the mixed oxide was confirmed. A stable dispersion of mixed oxide nanoparticles in diesel was achieved with the use of a mixed alkyl chain length surfactant. The thermal conductivity of the nanofuel did not show any significant increase with an increase in TWC concentration, and the calorific value of the nanofuel decreased. It is concluded that the cerium-zirconium mixed-oxide has a much higher OSC than pure ceria and could be potentially be used for better combustion of fuel in engines.


    cerium-zirconium mixed oxide, three-way catalyst, oxygen storage capacity, nanofuel

    Author Information:

    Sharma, Rajiv
    Dept. of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam

    Kanagaraj, S.
    Dept. of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam

    Committee/Subcommittee: D02.06

    DOI: 10.1520/STP156720120004

    CrossRef ASTM International is a member of CrossRef.