STP1529

    Impact of Irradiation Damage Recovery During Transportation on the Subsequent Room Temperature Tensile Behavior of Irradiated Zirconium Alloys

    Published: Apr 2012


      Format Pages Price  
    PDF Version (756K) 25 $25   ADD TO CART
    Complete Source PDF (39M) 25 $243   ADD TO CART


    Abstract

    Zirconium alloys are commonly used in pressurized water reactor as fuel rod cladding tubes. After irradiation and cooling in pool, the spent nuclear fuel assemblies are either transported for wet storage to a devoted site or loaded in suitable casks for dry storage on a nuclear power plant site. During dry transportation or at the beginning of dry storage, at temperatures around 400C, the cladding experiences a creep deformation under the hoop stress induced by the internal pressure of the fuel rod. During creep, a recovery of the radiation damage can occur that can affect the subsequent mechanical properties. The mechanical behavior of the cladding has been investigated in laboratory on two neutron irradiated cladding materials: fully recrystallized Zr-1 % Nb and stress-relieved Zircaloy-4. Creep tests under internal pressure were conducted at 400 and 420C. After depressurization and cooling, ring tensile tests were carried out at room temperature. In addition, transmission electron microscopy observations have been performed after testing. The post-creep mechanical response exhibited a decrease of the strength compared to the as-irradiated material. This decrease is associated with a significant recovery of the ductility, which becomes close to the ductility of the unirradiated material. The transmission electron microscopy examinations, conducted on recrystallized Zr-1 % Nb ring samples, revealed that the radiation defects have been annealed. It was also observed that as for the unirradiated material, the deformation occurred homogeneously throughout the grains. No dislocation channeling was observed contrary to the asirradiated material. These observations explain the recovery of the strength and of the ductility after post-irradiation creep that may also occur during dry transportation or at the beginning of dry storage.

    Keywords:

    ring tensile test, transmission electron microscopy, internal pressure creep test, heat treatment, deformation mechanisms, Zy-4, Zr-1 % Nb, spent nuclear fuel, transportation


    Author Information:

    Bourdiliau, B.
    DEN, Service d'Etudes des Matériaux Irradiés, CEA-Saclay, Gif-sur-Yvette,

    Onimus, F.
    DEN, Service d'Etudes des Matériaux Irradiés, CEA-Saclay, Gif-sur-Yvette,

    Cappelaere, C.
    DEN, Service d'Etudes des Matériaux Irradiés, CEA-Saclay, Gif-sur-Yvette,

    Pivetaud, V.
    DEN, Service d'Etudes des Matériaux Irradiés, CEA-Saclay, Gif-sur-Yvette,

    Bouffioux, P.
    EDF/R&D Les Renardières, Ecuelles, Moret sur Loing Cedex,

    Chabretou, V.
    AREVA, AREVA NP SAS, Lyon Cedex 6,

    Miquet, A.
    EDF/SEPTEN, Villeurbanne,


    Paper ID: STP152920120037

    Committee/Subcommittee: B10.02

    DOI: 10.1520/STP152920120037


    CrossRef ASTM International is a member of CrossRef.