STP1228

    Neutron Dosimetry and Mechanical Properties Changes Monitoring by Magnetic Response of Fe and Ni Wires

    Published: Jan 1994


      Format Pages Price  
    PDF (156K) 10 $25   ADD TO CART
    Complete Source PDF (15M) 10 $131   ADD TO CART


    Abstract

    Magnetic properties may be a useful means for monitoring the evolution of irradiation-induced damage in materials which are inherently ferromagnetic. Such materials include pure iron and nickel which are commonly used in a variety of irradiation applications for fluence or spectrum analysis. One such application is for fluence monitoring in Charpy coupon surveillance packets. This study examines the magnetic response of both iron and nickel wires which have been irradiated to doses up to 3.6×1019 cm−2 (E>lMeV) in such surveillance packets at reactor ambient irradiation temperatures of approximately 290°C. The results show that large changes in magnetic response are found for magnetic properties which are sensitive to materials microstructure. The changes are predominantly to decrease the magnetic remanence and coercivity with dose. These changes saturate at the highest doses examined in this study. Though direct microstructural examination is needed to confirm the hypothesis, the results are consistent with the development of a large population of defect structures (vacancy and interstitial clusters) which evolve with irradiation dose.

    Keywords:

    magnetic properties, irradiation damage, remanence, coercivity, permeability, neutron dosimetry, mechanical properties


    Author Information:

    Shong, W-J
    Graduate Student, Professor and Graduate Student, University of Illinois, Urbana, IL

    Stubbins, JF
    Graduate Student, Professor and Graduate Student, University of Illinois, Urbana, IL

    Williams, JG
    Professor, University of Arizona, Tucson, AZ

    Rogers, JW
    Senior Engineer, Idaho National Engineering Laboratory, Idaho Falls, ID

    Giacobbe, M
    Graduate Student, Professor and Graduate Student, University of Illinois, Urbana, IL


    Paper ID: STP15114S

    Committee/Subcommittee: E10.08

    DOI: 10.1520/STP15114S


    CrossRef ASTM International is a member of CrossRef.