STP1386

    Sensitive Procedures for Determining the Permeation Resistance of Chlorinated Polyethylene Against Liquid Propellants

    Published: Jan 2000


      Format Pages Price  
    PDF (248K) 14 $25   ADD TO CART
    Complete Source PDF (11M) 14 $138   ADD TO CART


    Abstract

    The permeation resistance of chlorinated polyethylene (CPE) used in totally encapsulating chemical protective suits against the aerospace fuels hydrazine, monomethylhydrazine, and uns-dimethylhydrazine was determined by measuring the breakthrough time and time-averaged vapor transmission rate (VTR) using procedures consistent with ASTM Test Methods for Resistance of Protective Clothing to Permeation by Liquids or Gases Under Conditions of Continuous Contact (F 739) and Intermittent Contact (F 1383). Two exposure scenarios were simulated: a 2-hour (h) fuel vapor exposure, and a liquid fuel “splash” followed by a 2-h vapor exposure. To simulate internal suit pressure during operation, a positive differential pressure of 0.3 in. water (75 Pa) on the collection side of the permeation apparatus was used. A model was developed using the available data to estimate propellant concentrations inside an air-line fed, totally encapsulating chemical protective suit. Concentrations were calculated under simulated conditions of fixed vapor transmission rate, variable breathing airflow rate, and variable splash exposure area. Calculations showed that the maximum allowable permeation rates of hydrazine fuels through CPE were of the order of 0.10 ng cm-2 min-1 for encapsulating suits with breathing airflow rates of 5 to 9 scfm (140 to 255 L min-1). Above these permeation rates, the 10 parts per billion (ppb) threshold limit value-time weighted average could be exceeded. To evaluate suit performance at ppb-level concentrations, use of a sensitive analytical method such as cation exchange high performance liquid chromatography with amperometric detection, was found to be essential. The analytical detection limit determined the lowest measurable VTR, which in turn governed the lowest permeant concentration that could be calculated inside the totally encapsulating chemical protective suit.

    Keywords:

    permeation resistance, Cloropel®, encapsulating PPE, hydrazine fuels


    Author Information:

    Waller, JM
    Materials Scientist, AlliedSignal Technical Services Corp. Team, NASA Johnson Space Center White Sands Test Facility, Las Cruces, NM

    Williams, JH
    Standard Materials Test Manager, NASA Laboratories Office, NASA Johnson Space Center White Sands Test Facility, Las Cruces, NM


    Paper ID: STP14461S

    Committee/Subcommittee: F23.30

    DOI: 10.1520/STP14461S


    CrossRef ASTM International is a member of CrossRef.