Fatigue Crack Growth Behavior of a Woven HPZ/Silicon Carbide Ceramic Matrix Composite

    Published: Jan 1997

      Format Pages Price  
    PDF (324K) 16 $25   ADD TO CART
    Complete Source PDF (7.8M) 16 $71   ADD TO CART


    This paper discusses the results of an investigation of the fatigue crack growth behavior of a silicon-nitrogen-carbon-oxygen/silicon carbide (HPZ/SiC) ceramic matrix composite containing an 8 harness satin weave fiber architecture. Crack growth during the tests was monitored using optical and scanning electron microscopy as well as specimen compliance. The fatigue crack growth behavior of the composite and the monolithic matrix was used to characterize the fiber bridging mechanism during fatigue loading. A shear lag crack bridging model was used to deduce the fiber/matrix interfacial shear stress during the crack propagation. The effect of fatigue loading on the predicted fiber bridging stresses and crack opening displacements are also discussed.


    ceramic matrix composite, damage tolerance, fatigue crack growth, fiber bridging, shear lag analysis, woven composite

    Author Information:

    Kramb, VA
    Graduate Research Assistant, University of Dayton Research Institute, Dayton, OH

    John, R
    Research Engineer, University of Dayton Research Institute, Dayton, OH

    Committee/Subcommittee: C28.07

    DOI: 10.1520/STP11818S

    CrossRef ASTM International is a member of CrossRef.