STP1401

    Improvement of Stress Corrosion Cracking (SCC) Resistance by Cyclic Pre-Straining in FCC Materials

    Published: Jan 2000


      Format Pages Price  
    PDF (208K) 9 $25   ADD TO CART
    Complete Source PDF (9.9M) 9 $215   ADD TO CART


    Abstract

    Improving the materials resistance to SCC has become a topic of wide interest for theoretical, engineering and financial reasons. The aim of this paper is to propose a process to delay the SCC damage. Recent studies of 316L austenitic stainless steel in boiling MgCl2 solutions show an improvement in SCC resistance by cyclic pre-straining in low cycle fatigue [1]. This improvement consists of an increase in both strain to failure and crack initiation strain, during Slow Strain Rate Tensile (SSRT) tests in aqueous solution.

    This paper analyses the effect of pre-fatigue in 316L and copper on their mechanical and electrochemical responses to better understand the delay of SCC damage in boiling MgCl2 and nitrite, respectively.

    The explanation for this beneficial effect is related to a modification of both surface electrochemical reactions kinetics and corrosion/plasticity interactions at the crack tip, due to the particular fatigue dislocation structure.

    Keywords:

    SCC, low cycle fatigue, SCC damage delay, surface layers, dislocation structure, electrochemical noise analysis


    Author Information:

    de Curiere, I
    Ph.D student, centre SMS, URA CNRS 1884, Ecole Nationale Supérieure des Mines de Saint-Etienne, Saint-Etienne cedex2,

    Bayle, B
    Research Engineer, centre SMS, URA CNRS 1884, Ecole Nationale Supérieure des Mines de Saint-Etienne, Saint-Etienne cedex2,

    Magnin, T
    Professor, centre SMS, URA CNRS 1884, Ecole Nationale Supérieure des Mines de Saint-Etienne, Saint-Etienne cedex2,


    Paper ID: STP10229S

    Committee/Subcommittee: G01.05

    DOI: 10.1520/STP10229S


    CrossRef ASTM International is a member of CrossRef.