Volume 42, Issue 4 (July 2014)

    Prediction of the Vertical Swelling Percentage of Expansive Clays Using a Two-Stage Artificial Neural Networks Methodology

    (Received 3 July 2013; accepted 18 November 2013)

    Published Online: 2014

    CODEN: JTEOAD

      Format Pages Price  
    PDF Version 13 $25   ADD TO CART


    Abstract

    Artificial Neural Networks (ANN), which are used in many different areas, have been applied to predict the vertical swelling percentage of expansive clays. In contrast to previous models that estimated ANN Models in a single phase, this paper proposes an alternative analysis in based on the following two-stage operation: (a) conducting an ANN analysis on the swelling-pressure test results (i.e., the ASTM 4546 Method C test results) to obtain the swelling-pressure model for any given clay characteristics, and (b) performing an additional ANN analysis on the swelling-percentage test results (i.e., the ASTM 4546 Method B test results), including the former ones, with the given independent variables of the clay characteristics. This second stage includes a defined expression containing the given surcharge pressure and the predicted value of the swelling pressure as obtained from the model of the previous stage. Two final ANN Models, each with a different arrangement of the given independent variables, were derived from this two-stage procedure. Their statistical fit was clearly found to be superior in comparison to previous models estimated with the same data set. Furthermore, one of these two models exhibited the expected geophysical behavior. As this new ANN Model yields higher predicted swelling-percentage values, it can definitely be regarded as a preferable one in the sense of enlarging the safety margin in heave calculations.


    Author Information:

    Bekhor, Shlomo
    Associate Professor, Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology,

    Livneh, Moshe
    Professor Emeritus, Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology,


    Stock #: JTE20130162

    ISSN: 0090-3973

    DOI: 10.1520/JTE20130162

    ASTM International is a member of CrossRef.

    Author
    Title Prediction of the Vertical Swelling Percentage of Expansive Clays Using a Two-Stage Artificial Neural Networks Methodology
    Symposium , 0000-00-00
    Committee D18