R-Curve Generation and CTOD Evaluation Considering Maximum Crack Growth Size and Parabolic Crack Front

    Volume 22, Issue 1 (January 1994)

    ISSN: 0090-3973

    CODEN: JTEOAD

    Page Count: 10


    Bhattacharya, S
    Centre for Materials Science and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi,

    Kumar, AN
    Centre for Materials Science and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi,

    (Received 14 September 1992; accepted 13 August 1993)

    Abstract

    The standard methods of estimating the average size of the slow crack growth region as described in BS 5762 (Crack Opening Displacement (COD)) and ASTM E 1290 (Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement) are cumbersome, painstaking, time consuming, and dependent on several factors; e.g., section thickness, the nature of crack front profile, and the number of measurements. Often errors are introduced in determining the average crack size which in turn affect the determination of critical CTOD value.

    However, several merits are associated with the use of maximum crack size. A theoretical relationship is established between the two physical quantities by assuming a parabolic nature of the slow crack growth front profile, which is supported by experimental data points. In situations of large crack growth, the crack profile tends to change from a parabolic to a semicircular crack front. A new approach is proposed to make use of the maximum crack size to generate R curves that can be extended to yield critical CTOD values. The nonlinear regression analysis of the CTOD-maximum crack size R curve yields critical CTOD values in agreement with the values that may be obtained by BS 5762. However, the linearly regressed and extrapolated critical CTOD values are found to be highly conservative. Alternatively, the average crack size may be obtained theoretically by using maximum crack size data to determine CTOD values following BS 5762.


    Paper ID: JTE12625J

    DOI: 10.1520/JTE12625J

    ASTM International is a member of CrossRef.

    Author
    Title R-Curve Generation and CTOD Evaluation Considering Maximum Crack Growth Size and Parabolic Crack Front
    Symposium , 0000-00-00
    Committee E08