Volume 31, Issue 3 (May 2003)

    Erosive Boundary Layers of Ni 200 in Vibratory Cavitation Erosion Tests

    (Received 15 April 2002; accepted 16 December 2002)

    CODEN: JTEOAD

      Format Pages Price  
    PDF 12 $25   ADD TO CART


    Abstract

    The test surface of a specimen for cavitation erosion testing is prepared by several machining operations. These operations induce alterations on the surface and in the material beneath it, thereby forming an affected material zone. The properties of this zone affect the mechanical and metallurgical properties of the material. As a consequence the erosive properties are affected too, but are not easily detected on the cumulative erosion-time curves.

    The cumulative erosion-time curves of Ni 200 erosion tests were modeled by the Weibull cumulative distribution function. The equivalent Weibull plot consists of two intersecting straight lines, thereby providing a bimodal plot with a decreasing slope. Each line describes a different erosion mode. The first mode, from test onset to the intersection point, describes the erosion process of the specimen's boundary layer. Since this layer is removed by means of the erosion process, it is designated as the erosive boundary layer.

    The second mode, from the intersection point onwards, describes the erosion process of the homogeneous material. Analysis of the Weibull plots of Ni 200 erosion tests enables determination of the erosive boundary layer thickness and erosion time; it further facilitates the evaluation of the erosive boundary layer effect on the entire erosion process. The Weibull method enables construction of plots describing the erosion process of an ideal specimen, with an erosive boundary layer of 1 μm thickness. Plots of this kind may be used to characterize Ni 200 and to compare erosion properties of various materials.


    Author Information:

    Meged, Y
    Haifa,


    Stock #: JTE12428J

    ISSN: 0090-3973

    DOI: 10.1520/JTE12428J

    ASTM International is a member of CrossRef.

    Author
    Title Erosive Boundary Layers of Ni 200 in Vibratory Cavitation Erosion Tests
    Symposium , 0000-00-00
    Committee G02