Journal Published Online: 01 November 1988
Volume 16, Issue 6

Structure/Property Relationship for Normalized Pipe Flanges (Grade LF2) Made to ASTM Specification A 350/A 350M

CODEN: JTEVAB

Abstract

A nondestructive procedure has been developed using microstructural examination to predict the Charpy impact value at −46°C (−50°F) of installed normalized flanges (Grade LF2) made to ASTM Specification A 350/A 350M (minimum impact requirement of 20 J at −46°C). V-notch Charpy impact specimens were cut from a number of flanges and tested at −46°C. The absorbed energies were correlated with microstructural measurements obtained from the Charpy specimens resulting in the equation

Impact energy absorbed, J, at −46°C = 37 d−1/2 − 2%P − 226 where P = volume pearlite, and, d = grain diameter, mm.

The relationships between the pearlite volume fraction and grain size at the surface of a flange to that measured at the corresponding Charpy position were then established, so that this equation could be adjusted to predict the impact energy from small slivers taken from the sides of installed flanges (an operation which would not affect the integrity of a flange).

The predicted impact energies from microstructural examination of small surface slivers taken from a large number of flanges were then compared to the values obtained from Charpy testing the same flanges. Statistical analysis of the results showed that to be 95% confident in meeting the ASTM A 350/A 350M (Grade LF2) impact requirement of 20 J at −46°C, the value predicted from the impact energy equation must be ≥ 33 J.

Having established the technique and assessed its accuracy, the technique was used in an on-site investigation to identify flanges that would fail to meet the impact requirement of 20 J at −46°C.

Author Information

Mintz, B
The City University, London, England
Pages: 13
Price: $25.00
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Stock #: JTE11272J
ISSN: 0090-3973
DOI: 10.1520/JTE11272J