Volume 7, Issue 4 (April 2010)

    Gigacycle Fatigue Properties of Bearing Steels

    (Received 31 August 2009; accepted 5 March 2010)

    Published Online: 2010

    CODEN: JAIOAD

      Format Pages Price  
    PDF Version 13 $25   ADD TO CART


    Abstract

    The concept of a fatigue limit at 106 cycles that was introduced by Wohler in 1850 seems nowadays to be the wrong magnitude when considering the fatigue life of modern industrial applications such as automotive engines that run typically billions of cycles. The necessity to increase performances in terms of lifetime and safety in steel fabricated products remains an issue, although testing is becoming more time consuming and costly with current design products. It is the aim of our research to develop better understanding of fatigue properties of steels in the gigacycle domain. One way to approach this is to use a piezoelectric fatigue testing system working at ultrasonic frequency. This paper will describe the research done on several 52100 steels coming from Europe (NF100C6) and Japan (SUJ2). Different heat treatments have been applied to obtain different microstructures: Martensite and bainite with and without residual austenite. The fatigue tests, up to 1011 cycles, have been carried out using piezoelectric machines working at 20 and 30 kHz under tension-compression, tension-tension, and torsion only. A set of specimens has been tested also with a circular notch to observe the effect of stress concentration. Finally the thermal dissipation during testing has been determined using an infrared camera. It is confirmed that the influence of inclusions is a key problem.


    Author Information:

    Bathias, Claude
    Emeritus Professor, Univ. Paris 10, Ville d’Avray,


    Stock #: JAI102712

    ISSN: 1546-962X

    DOI: 10.1520/JAI102712

    ASTM International is a member of CrossRef.

    Author
    Title Gigacycle Fatigue Properties of Bearing Steels
    Symposium Eighth International Symposium on Bearing Steel Technologies: Developments in Rolling Bearing Steels and Testing, 2009-05-22
    Committee A01