Sub-Surface Initiated Rolling Contact Fatigue—Influence of Non-Metallic Inclusions, Processing History, and Operating Conditions

    Volume 7, Issue 5 (May 2010)

    ISSN: 1546-962X

    CODEN: JAIOAD

    Published Online: 25 May 2010

    Page Count: 12


    Lund, Thore B.
    Project Manager, AB SKF, Gothenburg,

    (Received 29 July 2009; accepted 8 April 2010)

    Abstract

    A number of competing failure mechanisms are involved in bearing failure initiation. For well manufactured bearings operating under clean and well controlled running conditions, sub-surface initiated fatigue is the classical initiation form. Three mechanisms dominate the concept of sub-surface induced initiation and growth: (i) The well documented slow structural breakdown of the steel matrix due to accumulation of fatigue damage in a process superficially similar to tempering, (ii) stress induced generation of butterflies by a process enabling the growth of butterfly micro-cracks and accompanying wings at non-metallic inclusions, and (iii) surface induced hydrogen intrusion causing hydrogen-enhanced fatigue damage accumulation in the matrix. The development of butterflies as a function of contact stress, over-rolling, and non-metallic inclusion characteristics is presented, and the influence of metallurgical cleanliness and processing history on this progression is discussed. The results of laboratory conducted tests are compared to results from field applications where premature spallings have occurred. The progression from butterfly micro-cracks to extending cracks with non-etching borders has been studied. Special interest has been paid to the interaction between the non-metallic inclusion composition and morphology and their propensity to generate butterfly wing formations, as this may affect the way that inclusion harmfulness should be judged in rolling bearing steel quality assurance efforts. Complex oxy-sulfides are the main butterfly initiators in today’s bearing steels.


    Paper ID: JAI102559

    DOI: 10.1520/JAI102559

    ASTM International is a member of CrossRef.

    Author
    Title Sub-Surface Initiated Rolling Contact Fatigue—Influence of Non-Metallic Inclusions, Processing History, and Operating Conditions
    Symposium Eighth International Symposium on Bearing Steel Technologies: Developments in Rolling Bearing Steels and Testing, 2009-05-22
    Committee A01