Defining the Flammability of Cylindrical Metal Rods Through Characterization of the Thermal Effects of the Ignition Promoter

    Volume 6, Issue 7 (July 2009)

    ISSN: 1546-962X

    CODEN: JAIOAD

    Published Online: 2 July 2009

    Page Count: 12


    Lynn, David
    Ph.D. Candidate, Queensland Univ. of Technology, Brisbane, Queensland

    Steinberg, Ted
    Professor, Queensland Univ. of Technology, Brisbane, Queensland

    Sparks, Kyle
    NASA Test and Evaluation Contract, NASA White Sands Test Facility, Las Cruces, NM

    Stoltzfus, Joel M.
    Special Program Manager, NASA White Sands Test Facility, Las Cruces, NM

    (Received 28 November 2008; accepted 19 May 2009)

    Abstract

    All relevant international standards for determining if a metallic rod is flammable in oxygen utilize some form of “promoted ignition” test. In this test, for a given pressure, an overwhelming ignition source is coupled to the end of the test sample and the designation flammable or nonflammable is based upon the amount burned, that is, a burn criteria. It is documented that (1) the initial temperature of the test sample affects the burning of the test sample both (a) in regards to the pressure at which the sample will support burning (threshold pressure) and (b) the rate at which the sample is melted (regression rate of the melting interface); and, (2) the igniter used affects the test sample by heating it adjacent to the igniter as ignition occurs. Together, these facts make it necessary to ensure, if a metallic material is to be considered flammable at the conditions tested, that the burn criteria will exclude any region of the test sample that may have undergone preheating during the ignition process. A two-dimensional theoretical model was developed to describe the transient heat transfer occurring and resultant temperatures produced within this system. Several metals (copper, aluminum, iron, and stainless steel) and ignition promoters (magnesium, aluminum, and Pyrofuze®) were evaluated for a range of oxygen pressures between 0.69 MPa (100 psia) and 34.5 MPa (5,000 psia). A MATLAB® program was utilized to solve the developed model that was validated against (1) a published solution for a similar system and (2) against experimental data obtained during actual tests at the National Aeronautics and Space Administration White Sands Test Facility. The validated model successfully predicts temperatures within the test samples with agreement between model and experiment increasing as test pressure increases and/or distance from the promoter increases. Oxygen pressure and test sample thermal diffusivity were shown to have the largest effect on the results. In all cases evaluated, there is no significant preheating (above about 38°C/100°F) occurring at distances greater than 30 mm (1.18 in.) during the time the ignition source is attached to the test sample. This validates a distance of 30 mm (1.18 in.) above the ignition promoter as a burn length upon which a definition of flammable can be based for inclusion in relevant international standards (that is, burning past this length will always be independent of the ignition event for the ignition promoters considered here).


    Paper ID: JAI102253

    DOI: 10.1520/JAI102253

    ASTM International is a member of CrossRef.

    Author
    Title Defining the Flammability of Cylindrical Metal Rods Through Characterization of the Thermal Effects of the Ignition Promoter
    Symposium Twelfth International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, 2009-10-09
    Committee G04