Fatigue Crack Growth Analyses of Aerospace Threaded Fasteners—Part III: Experimental Crack Growth Behavior

    Volume 4, Issue 2 (February 2007)

    ISSN: 1546-962X

    CODEN: JAIOAD

    Published Online: 1 March 2007

    Page Count: 12


    Olsen, Kirk W.
    Senior Engineering Specialist, LORD Corporation, Erie, PA

    Rimnac, Clare M.
    Professor and Director, Musculoskeletal Mechanics and Materials Laboratories, Case Western Reserve University, Cleveland, OH

    (Received 3 December 2004; accepted 14 November 2006)

    Abstract

    Because fatigue crack growth in a threaded fastener can cause the loss of an aircraft, damage tolerant analyses are required. Because designers commonly perform crack growth analyses on stainless steel fasteners with scant data or simplifying assumptions, or both, the objective of this research was to determine the stress intensity multiplication factor (Y) in the threads of a nut loaded, stainless steel, aerospace, roll-threaded bolt under tensile fatigue conditions as the nondimensionalized crack depth (a/d) approaches zero. Y(a/d) can then be used to improve the accuracy of fatigue crack growth life estimations. Unflawed and flawed aerospace bolts were fatigue tested at a maximum stress (S) ranging from the ultimate tensile strength (UTS) to the surface endurance limit of the test bolt and at several loading ratios of 0.1⩽R⩽0.9. Data collection from the fracture surfaces yielded crack front shape characterization and striation spacing. The shape of the crack front in the unflawed and flawed test bolts was different and both changed as the crack grew. Fifty-one striation spacing measurements ranging from 5.6×10−5 to 7.9×10−4 mm were found at crack depths of a/d>0.035. These striation measurements were directly related to crack growth rates so that stress intensity factor ranges (ΔK) and in turn Y(a/d) could be estimated.


    Paper ID: JAI100489

    DOI: 10.1520/JAI100489

    ASTM International is a member of CrossRef.

    Author
    Title Fatigue Crack Growth Analyses of Aerospace Threaded Fasteners—Part III: Experimental Crack Growth Behavior
    Symposium Structural Integrity of Fasteners Including the Effects of Environment and Stress Corrosion Cracking, 2004-11-10
    Committee E08