Volume 33, Issue 1 (January 2010)

    Residual Strength of Liquefied Sand Measured in a Ring Shear Device

    (Received 16 July 2009; accepted 19 November 2009)

    Published Online: 2009

    CODEN: GTJOAD

      Format Pages Price  
    PDF 7 $25   ADD TO CART


    Abstract

    Earthquake-induced liquefaction flow slides have resulted in loss of life and major damage at many sites around the world. In order to better understand the mechanics of such slides, it is necessary to quantify the residual shearing strength of the liquefied soil. Small-scale stress-controlled experiments suggest that this residual strength is not a constant, but that liquefied sand can be modeled as a highly viscous stress-thinning fluid, whose resistance varies with the velocity of flow. We present results obtained with a ring shear device designed specifically to measure the large-displacement post-liquefaction residual strength of sands under strain-controlled conditions. Residual strength of a fine uniform sand was measured for a range of relative densities (Dr) from 19 % to 36 % at four different shear-strain rates, varying from 11 to 44 s−1 representative of flow slide velocities. Measurements show that the strain-rate-dependent Herschel–Bulkley model for stress-thinning fluids applies to the liquefied sand, with resistance increasing as strain rate increases, but suggest that at relative densities higher than perhaps 50 %, relative density dominates, and residual strength can be approximated as a constant.


    Author Information:

    Sandoval, J.
    Dept. of Civil Engineering, Univ. of New Hampshire, Durham, NH

    de Alba, P.
    Professor, Dept. of Civil Engineering, Univ. of New Hampshire, Durham, NH

    Fussell, B.
    Professor, Dept. of Mechanical Engineering, Univ. of New Hampshire, Durham, NH


    Stock #: GTJ102649

    ISSN: 0149-6115

    DOI: 10.1520/GTJ102649

    ASTM International is a member of CrossRef.

    Author
    Title Residual Strength of Liquefied Sand Measured in a Ring Shear Device
    Symposium , 0000-00-00
    Committee D18