Electrical Resistivity Tomography in Cylindrical Cells—Guidelines for Hardware Pre-Design

    Volume 33, Issue 1 (January 2010)

    ISSN: 0149-6115


    Published Online: 8 December 2009

    Page Count: 10

    Lee, J. Y.
    Korea Institute of Geoscience and Mineral Resources, Daejeon, Yuseong-gu

    Santamarina, J. C.
    Georgia Institute of Technology, Atlanta, GA

    (Received 5 February 2009; accepted 28 August 2009)


    Electrical resistivity tomography (ERT) allows for fast, non-destructive, and efficient sediment characterization and geotechnical process monitoring in the field as well as in laboratory applications. Besides the spatial distribution of resistivity, specimen geometry and electrode configuration determine the electrical potential distribution and the ensuing spatial resolution in the tomogram. We examine potential and current density distribution in various ERT system configurations using both experimental and numerical methods and explore optimal electrode configurations for cylindrical cells. Results show that optimal ERT configurations must take into consideration the required spatial resolution, sensitivity to anomalies, signal strength, and shunting effects along the cell perimeter. The system characteristics are defined in terms of electrode width Welec and length Lelec, cell diameter Dcell, and the distance from the electrode plane to conductive end-plates δ. The following dimensionless ratios emerge as guidelines for system pre-design: Welec/Dcell≈π/2n, Lelec /D cell ≈0.4, δ/D cell≥1, where n is the number of electrodes around the perimeter.

    Paper ID: GTJ102366

    DOI: 10.1520/GTJ102366

    ASTM International is a member of CrossRef.

    Title Electrical Resistivity Tomography in Cylindrical Cells—Guidelines for Hardware Pre-Design
    Symposium , 0000-00-00
    Committee E07