Volume 33, Issue 3 (May 2010)

    A New Alternative for Estimation of Geotechnical Engineering Parameters in Reclaimed Clays by Using Shear Wave Velocity

    (Received 4 February 2009; accepted 16 February 2010)

    Published Online: 2010

    CODEN: GTJOAD

      Format Pages Price  
    PDF 12 $25   ADD TO CART


    Abstract

    The consolidation behavior of reclaimed clay can be categorized as large strain deformation. Findings from previous studies indicate that the effective stress and the void ratio are important geotechnical engineering parameters for the characterization of large strain consolidation behavior. However, existing in situ consolidation characterization methods of reclaimed clay cannot adequately estimate changes of the effective stress and void ratio during a consolidation process. This paper suggests an alternative method for estimating the geotechnical engineering parameters of reclaimed clays using a shear wave. An in situ self-weight consolidation process of reclaimed clay is simulated in laboratory while shear wave velocity is continuously measured. Experimental results show that there are single trends in relationships among the shear wave velocity, effective stress, void ratio, and geotechnical engineering parameters for a normally consolidated clay (e.g., reclaimed clay). As a practical application, the in situ parameters and the expected settlement are predicted by incorporating the obtained relationships with the in situ shear wave velocity. The predicted values are in good accordance with the values measured in field. Therefore, the proposed method can be used effectively for geotechnical engineering parameter estimations of reclaimed clay during/after self-weight consolidation with the aid of in situ seismic exploration techniques.


    Author Information:

    Chang, Ilhan
    Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon,

    Cho, Gye-Chun
    Associate Professor, Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon,


    Stock #: GTJ102360

    ISSN: 0149-6115

    DOI: 10.1520/GTJ102360

    ASTM International is a member of CrossRef.

    Author
    Title A New Alternative for Estimation of Geotechnical Engineering Parameters in Reclaimed Clays by Using Shear Wave Velocity
    Symposium , 0000-00-00
    Committee D18